Total Defense + Repair: A Novel Concept in Solar Protection and Skin Rejuvenation

July 2015 | Volume 14 | Issue 7 | Supplement Individual Articles | 3 | Copyright © July 2015


David H. McDaniel MD FAAD,a Iltefat H. Hamzavi MD,b Joshua A. Zeichner MD,cSabrina G. Fabi MD FAAD FAACS,d Vivian W. Bucay MD,e Julie C. Harper MD,f Jody A. Comstock MD,g Elizabeth T. Makino BS CCRA MBA,h Rahul C. Mehta PhD,h and Virginia L. Vega PhDh

aMcDaniel Institute of Anti-Aging Research, Virginia Beach, VA
bDepartment of Dermatology, Henry Ford Hospital, Detroit, MI
cDepartment of Dermatology, Mount Sinai Hospital, New York, NY
dDepartment of Dermatology, San Diego, CA
eBucay Center for Dermatology and Aesthetics, San Antonio, TX
fDepartment of Dermatology, University of Alabama, Birmingham, AL
gSkin Spectrum, Tuczon, AZ
hResearch & Development, SkinMedica Inc., an Allergan Company, Irvine, CA

CONCLUSION

The deleterious effects of solar radiation are not linked exclusively to UVR. In vitro and clinical studies have shown that visible and IR radiations, as well as heat accumulation, are able to activate different signal transduction pathways, resulting in enhanced oxidative stress and premature aging. Chromophores for solar lights are localized in different cellular compartments, (ie, IR-A is mitochondrial cytochrome c complex, UVA is lipid in the biological membranes, and UVB is DNA in the nuclei), which strongly suggests a synergistic effect among these different types of radiation (UV + IR + visible + heat = 1+1+1+1=100). Thus, a sensitive approach to providing an efficacious and comprehensive solar protection is to generate SPF active ingredients with potent and efficacious antioxidants. TDR has a blend of antioxidants and special ingredients that complements SPF ingredients, redefining total (broad) solar protection. These antioxidants are the product of breakthrough technology, scientific research, and innovation, providing the next generation of multifunctional skin care products. SOL-IR Advanced Antioxidant Complex acts in harmony to diminish the signs of aging, providing an active superscreen effect that counterbalances the deleterious effects of free radicals on skin cells whilst promoting endogenous repair.

DISCLOSURES

Virginia L. Vega, Rahul Mehta, and Elizabeth T. Makino are employees of SkinMedica, an Allergan Company. David Mc Daniel was a MAB for Juvederm Voluma and has performed other consulting work for Allergan and SkinMedica.

ACKNOWLEDGMENTS

We would like to thank Kuniko Kadoya PhD and Robin Gunawan for providing us with unpublished data, and Samantha Widdicombe for her administrative support.

REFERENCES

  1. Krutmann J, Morita A, Chung JH. Sun exposure: what molecular photodermatology tells us about its good and bad sides. J Invest Dermatol. 2012;132(3 pt 2):976-984.
  2. Vierkötter A, Krutmann J. Environmental influences on skin aging and ethnic-specific manifestations. Dermatoendocrinol. 2012;4(3):227-231.
  3. Dupont E, Gomez J, Bilodeau D. Beyond UV radiation: a skin under challenge. Int J Cosmet Sci. 2013;35(3):224-232.
  4. Kligman AM. Early destructive effect of sunlight on human skin. JAMA. 1969;210(13):2377-2380.
  5. Kumakiri M, Hashimoto K, Willis I. Biologic changes due to long-wave ultraviolet irradiation on human skin: ultrastructural study. J Invest Dermatol. 1977;69(4):392-400.
  6. Akhalaya MY, Maksimov GV, Rubin AB, Lademann J, Darvin ME. Molecular action mechanisms of solar infrared radiation and heat on human skin. Ageing Res Rev. 2014;16:1-11.
  7. Mahmoud BH, Hexsel CL, Hamzavi IH, Lim HW. Effects of visible light on the skin. Photochem Photobiol. 2008;84(2):450-462.
  8. Cho S, Shin MH, Kim YK, et al. Effects of infrared radiation and heat on human skin aging in vivo. J Investig Dermatol Symp Proc. 2009;14(1):15-19.
  9. Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 1990;16(10):908-914.
  10. Varani J, Warner RL, Gharaee-Kermani M, et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol. 2000;114(3):480-486.
  11. Scharffetter-Kochanek K, Brenneisen P, Wenk J, et al. Photoaging of the skin from phenotype to mechanisms. Exp Gerontol. 2000;35(3):307-316.
  12. Gilchrest BA. Photoaging. J Invest Dermatol. 2013;133(e1):e2-e6.
  13. Kligman LH, Kligman AM. The nature of photoaging: its prevention and repair. Photodermatol. 1986;3(4):215-227.
  14. Gilchrest BA. Skin aging and photoaging: an overview. J Am Acad Dermatol. 1989;21(3 pt 2):610-613.
  15. Braverman IM, Fonferko E. Studies in cutaneous aging: I. The elastic fiber network. J Invest Dermatol. 1982;78(5):434-443.
  16. Tsuji T. The surface structural alterations of elastic fibers and elastotic material in solar elastosis: a scanning electron microscopic study. J Cutan Pathol. 1984;11(4):300-308.
  17. Smith JG Jr., Davidson EA, Sams WM Jr, Clark RD. Alterations in human dermal connective tissue with age and chronic sun damage. J Invest Dermatol. 1962;39:347-350.
  18. Lavker RM. Structural alterations in exposed and unexposed aged skin. J Invest Dermatol. 1979;73(1):59-66.
  19. Marks R, Edwards C. The measurement of photodamage. Br J Dermatol. 1992;127(suppl 41):s7-s13.
  20. West MD. The cellular and molecular biology of skin aging. Arch Dermatol. 1994;130(1):87-95.
  21. Massagué J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753-791.
  22. Kang S, Fisher GJ, Voorhees JJ. Photoaging and topical tretinoin: therapy, pathogenesis, and prevention. Arch Dermatol. 1997;133(10):1280-1284.
  23. Yaar M, Eller MS, Gilchrest BA. Fifty years of skin aging. J Investig Dermatol Symp Proc. 2002;7(1):51-58.
  24. Gilchrest BA. Actinic injury. Annu Rev Med. 1990;41:199-210.
  25. Matthews YJ, Halliday GM, Phan TA, Damian DL. Wavelength dependency for UVA-induced suppression of recall immunity in humans. J Dermatol Sci. 2010;59(3):192-197.
  26. Norval M, Halliday GM. The consequences of UV-induced immunosuppression for human health. Photochem Photobiol. 2011;87(5):965-977.
  27. Schade N, Esser C, Krutmann J. Ultraviolet B radiation-induced immunosuppression: molecular mechanisms and cellular alterations. Photochem Photobiol Sci. 2005;4(9):699-708.
  28. Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci. 2013;12(1):54-64.
  29. Darvin ME, Fluhr JW, Meinke MC, Zastrow L, Sterry W, Lademann J. Topical beta-carotene protects against infra-red-light-induced free radicals. Exp Dermatol. 2011;20(2):125-129.
  30. Schroeder P, Calles C, Benesova T, Macaluso F, Krutmann J. Photoprotection beyond ultraviolet radiation – effective sun protection has to include protection against infrared A radiation-induced skin damage. Skin Pharmacol Physiol. 2010;23(1):15-17.
  31. Zastrow L, Groth N, Klein F, et al. The missing link – light-induced (280-1,600 nm) free radical formation in human skin. Skin Pharmacol Physiol. 2009;22(1):31-44.
  32. Oliver JW, Vincelette R, Noojin GD, et al. Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures. J Biomed Opt. 2013;18(12):125002.
  33. Calles C, Schneider M, Macaluso F, Benesova T, Krutmann J, Schroeder P. Infrared A radiation influences the skin fibroblast transcriptome: mechanisms and consequences. J Invest Dermatol. 2010;130(6):1524-1536.
  34. Holzer AM, Athar M, Elmets CA. The other end of the rainbow: infrared and skin. J Invest Dermatol. 2010;130(6):1496-1499.
  35. Frank S, Oliver L, Lebreton-De Coster C, et al. Infrared radiation affects the mitochondrial pathway of apoptosis in human fibroblasts. J Invest Dermatol. 2004;123(5):823-831.
  36. McDaniel DH, Weiss RA, Geronemus RG, Mazur C, Wilson S, Weiss MA. Varying ratios of wavelengths in dual wavelength LED photomodulation alters gene expression profiles in human skin fibroblasts. Lasers Surg Med. 2010;42(6):540-545.]
  37. Schroeder P, Lademann J, Darvin ME, et al. Infrared radiation-induced matrix metalloproteinase in human skin: implications for protection. J Invest Dermatol. 2008;128(10):2491-2497.
  38. Kim MS, Kim YK, Lee DH, et al. Acute exposure of human skin to ultraviolet or infrared radiation or heat stimuli increases mast cell numbers and tryptase expression in human skin in vivo. Br J Dermatol. 2009;160(2):393-402.
  39. Bhawan J, Oh CH, Lew R, et al. Histopathologic differences in the photoaging process in facial versus arm skin. Am J Dermatopathol. 1992;14(3):224-230.
  40. Bosset S, Bonnet-Duquennoy M, Barré P, et al. Photoageing shows histological features of chronic skin inflammation without clinical and molecular abnormalities. Br J Dermatol. 2003;149(4):826-835.
  41. Lee HS, Lee DH, Cho S, Chung JH. Minimal heating dose: a novel biological unit to measure infrared irradiation. Photodermatol Photoimmunol Photomed. 2006;22(3):148-152.
  42. Schieke SM, Schroeder P, Krutmann J. Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms. Photodermatol Photoimmunol Photomed. 2003;19(5):228-234.
  43. Park CH, Lee MJ, Ahn J, et al. Heat shock-induced matrix metalloproteinase (MMP)-1 and MMP-3 are mediated through ERK and JNK activation and via an autocrine interleukin-6 loop. J Invest Dermatol. 2004;123(6):1012-1019.
  44. Chen Z, Seo JY, Kim YK, et al. Heat modulation of tropoelastin, fibrillin-1, and matrix metalloproteinase-12 in human skin in vivo. J Invest Dermatol. 2005;124(1):70-78.