Supplement Article: The Role of Epidermal Barrier Dysfunction and Cutaneous Microbiome Dysbiosis in the Pathogenesis and Management of Acne Vulgaris and Rosacea

September 2022 | Volume 21 | Issue 9 | SF3502915 | Copyright © September 2022


Published online August 31, 2022

Justin W. Marson MDa, Neal Bhatia MDb, Emmy Graber MD MBAc, Julie Harper MDd, Peter Lio MDe,f, Brook Tlougan MDg,h, Dillon Nussbaum BSi, Hilary E. Baldwin MDj,k

aDepartment of Dermatology, SUNY Downstate Health Sciences University, Brooklyn, NY;
bDirector of Clinical Dermatology, Therapeutics Clinical Research, San Diego, CA;
c The Dermatology Institute of Boston, Boston, MA;
dThe Dermatology and Skin Care Center of Birmingham, Birmingham AL;
eDepartments of Dermatology & Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL;
f Medical Dermatology Associates of Chicago, Chicago, IL;
g Westmed Medical Group, Purchase, NY;
hDepartment of Dermatology, Columbia University, New York, NY;
i Department of Dermatology, George Washington University, Washington, DC;
j Acne Treatment and Research Center, Brooklyn, NY;
k Department of Dermatology, Rutgers Robert Wood Johnson Medical Center, New Brunswick, NJ

31. Kim J. Review of the innate immune response in acne vulgaris: activation of Tolllike receptor 2 in acne triggers inflammatory cytokine responses. Dermatology. 2005;211(3):193-198. doi:10.1159/000087011
32. Kurokawa I, Danby FW, Ju Q, et al. New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol. 2009;18(10):821-832. doi:10.1111/j.1600-0625.2009.00890.x
33. Cundell AM. Microbial ecology of the human skin. Microb Ecol. 2018;76(1):113- 120. doi:10.1007/s00248-016-0789-6
34. Sørensen K, Aksglaede L, Petersen JH, Juul A. Recent changes in pubertal timing in healthy Danish boys: associations with body mass index. J Clin Endocrinol Metab. 2010;95(1):263-270. doi:10.1210/jc.2009-1478
35. Friedlander SF, Eichenfield LF, Fowler JF Jr, et al. Acne epidemiology and pathophysiology. Semin Cutan Med Surg. 2010;29(2 Suppl 1):2-4. doi:10.1016/j. sder.2010.04.002
36. Cunliffe WJ, Gould DJ. Prevalence of facial acne vulgaris in late adolescence and in adults. Br Med J. 1979;1(6171):1109-1110. doi:10.1136/bmj.1.6171.1109
37. Jugé R, Rouaud-Tinguely P, Breugnot J, et al. Shift in skin microbiota of western European women across aging. J Appl Microbiol. 2018;125(3):907-916. doi:10.1111/jam.13929
38. Shibagaki N, Suda W, Clavaud C, et al. Aging-related changes in the diversity of women's skin microbiomes associated with oral bacteria. Sci Rep. 2017;7(1):10567. Published 2017 Sep 5. doi:10.1038/s41598-017-10834-9
39. Dagnelie MA, Corvec S, Saint-Jean M, et al. Cutibacterium acnes phylotypes diversity loss: a trigger for skin inflammatory process. J Eur Acad Dermatol Venereol. 2019;33(12):2340-2348. doi:10.1111/jdvs15795
40. Beylot C, Auffret N, Poli F, et al. Propionibacterium acnes: an update on its role in the pathogenesis of acne. J Eur Acad Dermatol Venereol. 2014;28(3):271-278. doi:10.1111/jdvs12224
41. Oyewole AO, Birch-Machin MA. Sebum, inflammasomes and the skin: current concepts and future perspective. Exp Dermatol. 2015;24(9):651-654. doi:10.1111/exd.12774
42. Paugam C, Corvec S, Saint-Jean M, et al. Propionibacterium acnes phylotypes and acne severity: an observational prospective study. J Eur Acad Dermatol Venereol. 2017;31(9):e398-e399. doi:10.1111/jdvs14206
43. Dagnelie MA, Corvec S, Saint-Jean M, et al. Decrease in diversity of propionibacterium acnes phylotypes in patients with severe acne on the back. Acta Derm Venereol. 2018;98(2):262-267. doi:10.2340/00015555-2847
44. Yu Y, Champer J, Agak GW, et al. Different propionibacterium acnes phylotypes induce distinct immune responses and express unique surface and secreted proteomes. J Invest Dermatol. 2016;136(11):2221-2228. doi:10.1016/j.jid.2016.06.615
45. Higaki S, Kitagawa T, Kagoura M, et al. Correlation between Propionibacterium acnes biotypes, lipase activity and rash degree in acne patients. J Dermatol. 2000;27(8):519-522. doi:10.1111/j.1346-8138.2000.tb02219.x
46. Nazipi S, Stødkilde-Jørgensen K, Scavenius C, Brüggemann H. The skin bacterium propionibacterium acnes employs two variants of hyaluronate lyase with distinct properties. Microorganisms. 2017;5(3):57. doi:10.3390/ microorganisms5030057
47. Nakatsuji T, Tang DC, Zhang L, Gallo RL, Huang CM. Propionibacterium acnes CAMP factor and host acid sphingomyelinase contribute to bacterial virulence: potential targets for inflammatory acne treatment. PLoS One. 2011;6(4):e14797. doi:10.1371/journal.pone.0014797
48. Valanne S, McDowell A, Ramage G, et al. CAMP factor homologues in Propionibacterium acnes: a new protein family differentially expressed by types I and II. Microbiology (Reading). 2005;151(Pt 5):1369-1379. doi:10.1099/ mic.0.27788-0
49. Lheure C, Grange PA, Ollagnier G, et al. TLR-2 Recognizes Propionibacterium acnes camp factor 1 from highly inflammatory strains. PLoS One. 2016;11(11):e0167237. doi:10.1371/journal.pone.0167237
50. Bek-Thomsen M, Lomholt HB, Scavenius C, et al. Proteome analysis of human sebaceous follicle infundibula extracted from healthy and acne-affected skin. PLoS One. 2014;9(9):e107908. doi:10.1371/journal.pone.0107908
51. Sörensen M, Mak TN, Hurwitz R, et al. Mutagenesis of Propionibacterium acnes and analysis of two CAMP factor knock-out mutants. J Microbiol Methods. 2010;83(2):211-216. doi:10.1016/j.mimet.2010.09.008
52. Liu PF, Nakatsuji T, Zhu W, et al. Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine. 2011;29(17):3230-3238. doi:10.1016/j.vaccine.2011.02.036
53. Shu M, Kuo S, Wang Y, et al. Porphyrin metabolisms in human skin commensal Propionibacterium acnes bacteria: potential application to monitor human radiation risk. Curr Med Chem. 2013;20(4):562-568. doi:10.2174/0929867311320040007
54. Johnson T, Kang D, Barnard E, Li H. Strain-level differences in porphyrin production and regulation in propionibacterium acnes elucidate disease associations. mSphere. 2016;1(1):e00023-15. doi:10.1128/mSphere.00023-15
55. Brüggemann H, Lomholt HB, Tettelin H, Kilian M. CRISPR/cas loci of type II Propionibacterium acnes confer immunity against acquisition of mobile elements present in type I P. acnes. PLoS One. 2012;7(3):e34171. doi:10.1371/ journal.pone.0034171
56. McDowell A, Barnard E, Nagy I, et al. An expanded multilocus sequence typing scheme for propionibacterium acnes: investigation of 'pathogenic', 'commensal' and antibiotic resistant strains. PLoS One. 2012;7(7):e41480. doi:10.1371/journal.pone.0041480
57. Lomholt HB, Kilian M. Clonality and anatomic distribution on the skin of antibiotic resistant and sensitive Propionibacterium acnes. Acta Derm Venereol. 2014;94(5):534-538. doi:10.2340/00015555-1794
58. Thompson KG, Rainer BM, Antonescu C, et al. Comparison of the skin microbiota in acne and rosacea. Exp Dermatol. 2021;30(10):1375-1380. doi:10.1111/exd.14098
59. Wang Y, Kuo S, Shu M, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol. 2014;98(1):411-424. doi:10.1007/s00253-013-5394-8
60. Marinelli LJ, Fitz-Gibbon S, Hayes C, et al. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates. mBio. 2012;3(5):e00279-12. doi:10.1128/mBio.00279-12
61. Brown TL, Petrovski S, Dyson ZA, et al. The formulation of bacteriophage in a semi solid preparation for control of propionibacterium acnes growth. PLoS One. 2016;11(3):e0151184. doi:10.1371/journal.pone.0151184
62. Liu J, Yan R, Zhong Q, et al. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin. ISME J. 2015;9(9):2116. doi:10.1038/ ismej.2015.144
63. Jończyk-Matysiak E, Weber-Dąbrowska B, Żaczek M, et al. Prospects of phage application in the treatment of acne caused by propionibacterium acnes. Front Microbiol. 2017;8:164. doi:10.3389/fmicb.2017.00164
64. McCoy WH 4th, Otchere E, Rosa BA, Martin J, Mann CM, Mitreva M. Skin ecology during sebaceous drought – how skin microbes respond to isotretinoin. J Invest Dermatol. 2019;139(3):732-735. doi:10.1016/j.jid.2018.09.023
65. Ryan-Kewley AE, Williams DR, Hepburn N, Dixon RA. Non-antibiotic isotretinoin treatment differentially controls propionibacterium acnes on skin of acne patients. Front Microbiol. 2017;8:1381. doi:10.3389/fmicb.2017.01381
66. Kelhälä HL, Aho VTE, Fyhrquist N, et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne. Exp Dermatol. 2018;27(1):30-36. doi:10.1111/ exd.13397
67. Crawford GH, Pelle MT, James WD. Rosacea: I. Etiology, pathogenesis, and subtype classification. J Am Acad Dermatol. 2004;51(3):327-344. doi:10.1016/j. jaad.2004.03.030
68. Draelos ZD. Facial hygiene and comprehensive management of rosacea. Cutis. 2004;73(3):183-187.
69. Corazza M, la Malfa W, Lombardi A, et al. Role of allergic contact dermatitis in rosacea. Contact Dermatitis. 1997;37(1):40-41. doi:10.1111/j.1600-0536.1997. tb00379.x
70. Baldwin H, Alexis AF, Andriessen A, et al. Evidence of barrier deficiency in rosacea and the importance of integrating otc skincare products into treatment regimens. J Drugs Dermatol. 2021;20(4):384-392. doi:10.36849/JDD.2021.5861
71. Darlenski R, Kazandjieva J, Tsankov N, Fluhr JW. Acute irritant threshold correlates with barrier function, skin hydration and contact hypersensitivity in atopic dermatitis and rosacea. Exp Dermatol. 2013;22(11):752-753. doi:10.1111/ exd.12251
72. Darlenski R, Kazandjieva J, Fluhr JW, et al. Lactic acid sting test does not differentiate between facial and generalized skin functional impairment in sensitive skin in atopic dermatitis and rosacea. J Dermatol Sci. 2014;76(2):151- 153. doi:10.1016/j.jdermsci.2014.08.014 73. Dirschka T, Tronnier H, Fölster-Holst R. Epithelial barrier function and atopic diathesis in rosacea and perioral dermatitis. Br J Dermatol. 2004;150(6):1136- 1141. doi:10.1111/j.1365-2133.2004.05985.x
74. Lonne-Rahm SB, Fischer T, Berg M. Stinging and rosacea. Acta Derm Venereol. 1999;79(6):460-461. doi:10.1080/000155599750009915
75. Pelle MT, Crawford GH, James WD. Rosacea: II. Therapy. J Am Acad Dermatol. 2004;51(4):499-514. doi:10.1016/j.jaad.2004.03.033
76. Draelos ZD. Cosmetics in acne and rosacea. Semin Cutan Med Surg. 2001;20(3):209-214. doi:10.1053/sder.2001.27556
77. Del Rosso JQ. The use of moisturizers as an integral component of topical therapy for rosacea: clinical results based on the assessment of skin characteristics study. Cutis. 2009;84(2):72-76.
78. Subramanyan K. Role of mild cleansing in the management of patient skin. Dermatol Ther. 2004;17(Suppl 1):26-34. doi:10.1111/j.1396-0296.2004.04s1003.x
79. Draelos ZD, Green BA, Edison BL. An evaluation of a polyhydroxy acid skin care regimen in combination with azelaic acid 15% gel in rosacea patients. J Cosmet Dermatol. 2006;5(1):23-29. doi:10.1111/j.1473-2165.2006.00219.x
80. Ní Raghallaigh S, Powell FC. Epidermal hydration levels in patients with rosacea improve after minocycline therapy. Br J Dermatol. 2014;171(2):259-266. doi:10.1111/bjd.12770
81. Holmes AD. Potential role of microorganisms in the pathogenesis of rosacea. J Am Acad Dermatol. 2013;69(6):1025-1032. doi:10.1016/j.jaad.2013.08.006
82. Casas C, Paul C, Lahfa M, et al. Quantification of demodex folliculorum by pcr in rosacea and its relationship to skin innate immune activation. Exp Dermatol. 2012;21(12):906-910. doi:10.1111/exd.12030
83. Roihu T, Kariniemi AL. Demodex mites in acne rosacea. J Cutan Pathol. 1998;25(10):550-552. doi:10.1111/j.1600-0560.1998.tb01739.x
84. Forton F, Germaux MA, Brasseur T, et al. Demodicosis and rosacea: epidemiology and significance in daily dermatologic practice. J Am Acad Dermatol. 2005;52(1):74-87. doi:10.1016/j.jaad.2004.05.034
85. Bonamigo RR, Bakos L, Edelweiss M, Cartell A. Could matrix metalloproteinase-9 be a link between Demodex folliculorum and rosacea? J Eur Acad Dermatol Venereol. 2005;19(5):646-647. doi:10.1111/j.1468-3083.2005.01221.x
86. Forton FMN. The pathogenic role of demodex mites in rosacea: a potential therapeutic target already in erythematotelangiectatic rosacea? Dermatol Ther (Heidelb). 2020;10(6):1229-1253. doi:10.1007/s13555-020-00458-9
87. Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol. 2007;157(3):474-481. doi:10.1111/j.1365-2133.2007.08028.x
88. O'Reilly N, Menezes N, Kavanagh K. Positive correlation between serum immunoreactivity to Demodex-associated Bacillus proteins and erythematotelangiectatic rosacea. Br J Dermatol. 2012;167(5):1032-1036. doi:10.1111/j.1365-2133.2012.11114.x
89. Li J, O'Reilly N, Sheha H, et al. Correlation between ocular Demodex infestation