Supplement Article: The Role of Epidermal Barrier Dysfunction and Cutaneous Microbiome Dysbiosis in the Pathogenesis and Management of Acne Vulgaris and Rosacea

September 2022 | Volume 21 | Issue 9 | SF3502915 | Copyright © September 2022


Published online August 31, 2022

Justin W. Marson MDa, Neal Bhatia MDb, Emmy Graber MD MBAc, Julie Harper MDd, Peter Lio MDe,f, Brook Tlougan MDg,h, Dillon Nussbaum BSi, Hilary E. Baldwin MDj,k

aDepartment of Dermatology, SUNY Downstate Health Sciences University, Brooklyn, NY;
bDirector of Clinical Dermatology, Therapeutics Clinical Research, San Diego, CA;
c The Dermatology Institute of Boston, Boston, MA;
dThe Dermatology and Skin Care Center of Birmingham, Birmingham AL;
eDepartments of Dermatology & Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL;
f Medical Dermatology Associates of Chicago, Chicago, IL;
g Westmed Medical Group, Purchase, NY;
hDepartment of Dermatology, Columbia University, New York, NY;
i Department of Dermatology, George Washington University, Washington, DC;
j Acne Treatment and Research Center, Brooklyn, NY;
k Department of Dermatology, Rutgers Robert Wood Johnson Medical Center, New Brunswick, NJ

and serum immunoreactivity to Bacillus proteins in patients with Facial rosacea. Ophthalmology. 2010;117(5):870-877.e1. doi:10.1016/j.ophtha.2009.09.057
90. O'Reilly N, Bergin D, Reeves EP, McElvaney NG, Kavanagh K. Demodexassociated bacterial proteins induce neutrophil activation. Br J Dermatol. 2012;166(4):753-760. doi:10.1111/j.1365-2133.2011.10746.x
91. Cogen AL, Yamasaki K, Muto J, et al. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS One. 2010;5(1):e8557. doi:10.1371/ journal.pone.0008557
92. Bastos MC, Ceotto H, Coelho ML, Nascimento JS. Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. Curr Pharm Biotechnol. 2009;10(1):38-61. doi:10.2174/138920109787048580
93. Dowd SE, Sun Y, Secor PR, et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 2008;8:43. doi:10.1186/1471-2180-8-43
94. Uçkay I, Pittet D, Vaudaux P, et al. Foreign body infections due to Staphylococcus epidermidis. Ann Med. 2009;41(2):109-119. doi:10.1080/07853890802337045
95. Whitfeld M, Gunasingam N, Leow LJ, et al. Staphylococcus epidermidis: a possible role in the pustules of rosacea. J Am Acad Dermatol. 2011;64(1):49-52. doi:10.1016/j.jaad.2009.12.036
96. Dahl MV, Ross AJ, Schlievert PM. Temperature regulates bacterial protein production: possible role in rosacea. J Am Acad Dermatol. 2004;50(2):266-272. doi:10.1016/j.jaad.2003.05.005
97. Woo YR, Lee SH, Cho SH, Lee JD, Kim HS. Characterization and analysis of the skin microbiota in rosacea: impact of systemic antibiotics. J Clin Med. 2020;9(1):185. doi:10.3390/jcm9010185
98. Wang R, Farhat M, Na J, Li R, Wu Y. Bacterial and fungal microbiome characterization in patients with rosacea and healthy controls. Br J Dermatol. 2020;183(6):1112-1114. doi:10.1111/bjd.19315
99. Searle T, Ali FR, Carolides S, Al-Niaimi F. Rosacea and the gastrointestinal system. Australas J Dermatol. 2020;61(4):307-311. doi:10.1111/ajd.13401
100. Egeberg A, Weinstock LB, Thyssen EP, et al. Rosacea and gastrointestinal disorders: a population-based cohort study. Br J Dermatol. 2017;176(1):100-106. doi:10.1111/bjd.14930
101. Kim M, Choi KH, Hwang SW, et al. Inflammatory bowel disease is associated with an increased risk of inflammatory skin diseases: A population-based cross-sectional study. J Am Acad Dermatol. 2017;76(1): 40-48. doi:10.1016/j.jaad.2016.08.022
102. Parodi A, Paolino S, Greco A, et al. Small intestinal bacterial overgrowth in rosacea: clinical effectiveness of its eradication. Clin Gastroenterol Hepatol. 2008;6(7):759-764. doi:10.1016/j.cgh.2008.02.054
103. Nam JH, Yun Y, Kim HS, et al. Rosacea and its association with enteral microbiota in Korean females. Exp Dermatol. 2018;27(1):37-42. doi:10.1111/exd.13398
104. Marson J, Berto S, Mouser P, Baldwin H. Association between rosacea, environmental factors, and facial cutaneous dysbiosis: A pilot study from the largest national festival of twins. SKIN. 2021;5(5), 487–495. https://doi. org/10.25251/skin.5.5.6
105. Zaidi AK, Spaunhurst K, Sprockett D, et al. Characterization of the facial microbiome in twins discordant for rosacea. Exp Dermatol. 2018;27(3):295-298. doi:10.1111/exd.13491
106. Zaenglein AL, Pathy AL, Schlosser BJ, et al. Guidelines of care for the management of acne vulgaris. [published correction appears in J Am Acad Dermatol. 2020 Jun;82(6):1576]. J Am Acad Dermatol. 2016;74(5):945-73.e33. doi:10.1016/j.jaad.2015.12.037
107. Weber SU, Thiele JJ, Han N, et al. Topical alpha-tocotrienol supplementation inhibits lipid peroxidation but fails to mitigate increased transepidermal water loss after benzoyl peroxide treatment of human skin. Free Radic Biol Med. 2003;34(2):170-176. doi:10.1016/s0891-5849(02)01187-5
108. Zhou L, Chen L, Liu X, et al. The influence of benzoyl peroxide on skin microbiota and the epidermal barrier for acne vulgaris. Dermatol Ther. 2022;35(3):e15288. doi:10.1111/dth.15288
109. Lam M, Hu A, Fleming P, Lynde CW. The Impact of Acne Treatment on Skin Bacterial Microbiota: A Systematic Review. J Cutan Med Surg. 2022;26(1):93- 97. doi:10.1177/12034754211037994
110. Chien AL, Tsai J, Leung S, et al. Association of systemic antibiotic treatment of acne with skin microbiota characteristics. JAMA Dermatol. 2019;155(4):425- 434. doi:10.1001/jamadermatol.2018.5221
111. Marson JW, Baldwin HE. An overview of acne therapy, part 2: Hormonal therapy and isotretinoin. Dermatol Clin. 2019;37(2):195-203. doi:10.1016/j. det.2018.12.002
112. Marson JW, Baldwin HE. Rosacea: a wholistic review and update from pathogenesis to diagnosis and therapy. Int J Dermatol. 2020;59(6):e175-e182. doi:10.1111/ijd.14757
113. Del Rosso JQ, Tanghetti E, Webster G, et al. Update on the management of rosacea from the american acne & rosacea society (AARS). J Clin Aesthet Dermatol. 2019;12(6):17-24.
114. Korting HC, Ponce-Pöschl E, Klövekorn W, Schmötzer G, Arens-Corell M, Braun- Falco O. The influence of the regular use of a soap or an acidic syndet bar on pre-acne. Infection. 1995;23(2):89-93. doi:10.1007/BF01833872
115. van Zuuren EJ, Fedorowicz Z, Tan J, et al. Interventions for rosacea based on the phenotype approach: an updated systematic review including GRADE assessments. Br J Dermatol. 2019;181(1):65-79. doi:10.1111/bjd.17590
116. Addor FA. Skin barrier in rosacea. An Bras Dermatol. 2016;91(1):59-63. doi:10.1590/abd1806-4841.20163541
117. Lain E, Andriessen AE. Choosing the Right Partner: Complementing prescription acne medication with over-the-counter cleansers and moisturizers. J Drugs Dermatol. 2020;19(11):1069-1075. doi:10.36849/JDD.2020.5536
118. Zeichner JA, Del Rosso JQ. Multivesicular emulsion ceramide-containing moisturizers: an evaluation of their role in the management of common skin disorders. J Clin Aesthet Dermatol. 2016;9(12):26-32.
119. Marson JW, Baldwin HE. New concepts, concerns, and creations in acne. Dermatol Clin. 2019;37(1):1-9. doi:10.1016/j.det.2018.07.002
120. Dessinioti C, Dreno B. Acne treatments: future trajectories. Clin Exp Dermatol. 2020;45(8):955-961. doi:10.1111/ced.14239
121. Claesen J, Spagnolo JB, Ramos SF, et al. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci Transl Med. 2020;12(570):eaay5445. doi:10.1126/scitranslmed.aay5445
122. Yu Y, Dunaway S, Champer J, et al. Changing our microbiome: probiotics in dermatology. Br J Dermatol. 2020;182(1):39-46. doi:10.1111/bjd.18088
123. Kang BS, Seo JG, Lee GS, et al. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol. 2009;47(1):101- 109. doi:10.1007/s12275-008-0179-y
124. Muizzuddin N, Maher W, Sullivan M, et al. Physiological effect of a probiotic on skin. J Cosmet Sci. 2012;63(6):385-395.
125. AOBiome Therapeutics. AOBiome Therapeutics reports positive efficacy results from phase 2b clinical trial of ammonia oxidizing bacteria (AOB) for the treatment of acne vulgaris. Available at: https://www.aobiome.com/ pressreleases/aobiome-therapeutics-reports-positive-efficacy-results-fromphase- 2b-clinical-trial-of-ammonia-oxidizing-bacteria-aob-for-the-treatment-ofacne- vulgaris/#primary. Published October 19, 2017. Accessed December 7, 2021.
126. Jung GW, Tse JE, Guiha I, Rao J. Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to moderate acne. J Cutan Med Surg. 2013;17(2):114-122. doi:10.2310/7750.2012.12026
127. Fabbrocini G, Bertona M, Picazo Ó, et al. Supplementation with Lactobacillus rhamnosus SP1 normalises skin expression of genes implicated in insulin signalling and improves adult acne. Benef Microbes. 2016;7(5):625-630. doi:10.3920/BM2016.0089
128. Nakatsuji T, Gallo RL, Shafiq F, et al. Use of autologous bacteriotherapy to treat staphylococcus aureus in patients with atopic dermatitis: A randomized double-blind clinical trial. JAMA Dermatol. 2021;157(8):978-982. doi:10.1001/ jamadermatol.2021.1311
129. O'Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018;6(1):177. doi:10.1186/s40168-018-0558-5
130. Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850-859. doi:10.1101/gr.131029.111
131. Stevenson A, Cray JA, Williams JP, et al. Is there a common water-activity limit for the three domains of life? ISME J. 2015;9(6):1333-1351. doi:10.1038/ ismej.2014.219
132. Al-Ghazzewi FH, Tester RF. Impact of prebiotics and probiotics on skin health. Benef Microbes. 2014;5(2):99-107. doi:10.3920/BM2013.0040
133. Nelson DC, Wirsen CO, Jannasch HW. Characterization of large, autotrophic beggiatoa spp. abundant at hydrothermal vents of the guaymas basin. Appl Environ Microbiol. 1989;55(11):2909-2917. doi:10.1128/aem.55.11.2909- 2917.1989
134. Mahé YF, Martin R, Aubert L, et al. Induction of the skin endogenous protective mitochondrial MnSOD by Vitreoscilla filiformis extract. Int J Cosmet Sci. 2006;28(4):277-287. doi:10.1111/j.1467-2494.2006.00333.x
135. Volz T, Skabytska Y, Guenova E, et al. Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. J Invest Dermatol. 2014;134(1):96-104. doi:10.1038/jid.2013.291
136. Gueniche A, Knaudt B, Schuck E, et al. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled clinical study. Br J Dermatol. 2008;159(6):1357-1363. doi:10.1111/j.1365-2133.2008.08836.x
137. ISAD 2014, 8th Georg Rajka symposium on atopic dermatitis, Nottingham, 21- 23 may 2014. Br J Dermatol. 2014;170(6):e1-e55. doi:10.1111/bjd.13064
138. Seité, S., Zelenkova, H., Martin, R., et al. Using a specific emollient to manage skin microbiome dysbiosis. J Am Acad Dermatol. 2016;74(5):AB89. doi:10.1016/j. jaad.2016.02.348

AUTHOR CORRESPONDENCE

Justin W. Marson MD justin.w.marson@gmail.com