Multi-Center, Double-Blind, Vehicle-Controlled Clinical Trial of an Alpha and Beta Defensin-Containing Anti-Aging Skin Care Regimen With Clinical, Histopathologic, Immunohistochemical, Photographic, and Ultrasound Evaluation

April 2018 | Volume 17 | Issue 4 | Original Article | 426 | Copyright © April 2018

Amy Taub MD,a Vivian Bucay MD,b Gregory Keller MD,c Jay Williams PhD,c and Darius Mehregan MDd

aAdvanced Dermatology/Skinfo, Lincolnshire, IL; Northwestern University Medical School, Department of Dermatology, Chicago, IL bBucay Center for Dermatology and Aesthetics, San Antonio, TX cGregory Keller Plastic Surgery, Santa Barbara, CA dWayne State University, Monroe, MI

cosmeceuticals, without irritation or inflammation, sun-sensitivity, or concerns about neoplasia of the treated skin.

CONCLUSION

An alpha- defensin 5 and beta-defensin 3 containing skin care regimen of 3 products (1) globally and statistically significantly improves the visual appearance, coarse and fine wrinkles, appearance of pores, uneven texture, and thickness of the epidermis of aging skin without the irritation and dryness or increased sun-sensitivity associated with the use of retinols, and (2) stimulates skin rejuvenation without apparent carcinogenic risk. The data is consistent with the proposed mechanism of action that defensins activates the body’s own dormant stem cells to generate healthy new epidermal cells. Collectively, these findings may represent a paradigm shift in cosmeceutical skin care.

DISCLOSURES

Dr. Taub is part owner of MediCell Technologies LLC and serves on its Medical Advisory Board. She has also performed research, received honoraria (from), and given speaking presentations for MediCell. Dr. Bucay is part owner of MediCell Technologies LLC and serves on its Medical Advisory Board. She has also performed research and given speaking presentations for MediCell. Dr. Keller is part owner of MediCell Technologies LLC, Chief Medical Officer and Chairman. He has also performed research and given speaking presentations for MediCell. Dr. Jay Williams and Dr. Mehregan have no conflicts.

REFERENCES

  1. Ojeh N, Pastar I, Tomic-Canic M, et al. Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci. 2015;16(10):25476-25501. 
  2. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339-373. 
  3. Braun KM, Prowse DM. Distinct epidermal stem cell compartments are maintained by independent niche microenvironments. Stem Cell Rev. 2006;2(3):221-231. 
  4. Bardelli S, Moccetti M. Remodeling the human adult stem cell niche for regenerative medicine applications. Stem Cells Int. 2017;2017:6406025. 
  5. Taub AF. Molecular biology of adipose-derived adult stem cells. In: Katz BE, Sadick NS, eds. Procedures in Cosmetic Dermatology Series: Body Contouring. Cambridge, MA: Saunders Elsevier Inc.; 2010:31-42. 
  6. Plikus MV, Gay DL, Treffeisen E, et al. Epithelial stem cells and implications for wound repair. Semin Cell Dev Biol. 2012;23:946-953. 
  7. Ito M, Liu Y, Yang Z, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11(12):1351-1354.
  8. Snippert HJ, Haegebarth A, Kasper M, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science. 2010;327:1385-1389. 
  9. Lough DM, Yang M, Blum A, et al. Transplantation of the LGR6+ epithelial stem cell into full-thickness cutaneous wounds results in enhanced healing, nascent hair follicle development, and augmentation of angiogenic analystes. Plast Reconstr Surg. 2014;133(3):579-590. 
  10. Lough D, Dai H, Yang M, et al. Stimulation of the follicular bulge LGR5+ and LGR6-positive stem cells with the gut-derived human alpha defensin 5 results in decreased bacterial presence, enhanced wound healing, and hair growth from tissues devoid of adnexal structures. Plast Reconstr Surg. 2013;132(5):1159-1171. 
  11. Schneider JJ, Unholzer A, Schaller M, et al. Human defensins. J Mol Med (Berl). 2005;83(8):587-595. 
  12. Hanaoka Y, Yamaguchi Y, Yamamoto H, et al. In vitro and in vivo anticancer activity of human β-defensin-3 and its mouse homolog. Anticancer Res. 2016;36(11):5999-6004. 
  13. Lichtenstein A, Ganz T, Selsted ME, et al. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood. 1986;68(6):1407-1410. 
  14. Biragyn A, Ruf ni PA, Leifer CA, et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science. 2002;298(5595):1025-1029. 
  15. Han W, Wang W, Mohammed KA, et al. Alpha-defensins increase lung fibroblast proliferation and collagen synthesis via the beta-catenin signaling pathway. FEBS J. 2009;276(22):6603-6614. 
  16. Semple F, Dorin JR. β-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun. 2012;4(4):337-348. 
  17. Kiatsurayanon C, Niyonsaba F, Smithrithee R, et al. Host defense (Antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol. 2014;134(8):2163-2173. 
  18. Sundaram H, Mehta RC, Norine JA, et al. Topically applied physiologically balanced growth factors: a new paradigm of skin rejuvenation. J Drugs Dermatol. 2009;8(5) (Suppl):4-13. 
  19. Malerich S, Berson D. Next generation cosmeceuticals: the latest in peptides, growth factors, cytokines, and stem cells. Dermatol Clin. 2014;32(1):13-21. 
  20. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729-724 
  21. Federal Register (62 FR 25692). May 9. 1997 
  22. Griffiths CE, Wang TS, Hamilton TA, et al. A photonumeric scale for the assessment of cutaneous photodamage. Arch Dermatol. 1992;128(3):347-351. 
  23. Gerdes J, Schwab U, Lemke H, et al. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer. 1983;31:13–20. 
  24. Gold MH, Goldman MP, Biron J. Efficacy of novel skin cream containing mixture of human growth factors and cytokines for skin rejuvenation. J Drugs Dermatol. 2007;6(2):197-201. 
  25. Fabi S, Sundaram H. The potential of topical and injectable growth factors and cytokines for skin rejuvenation. Facial Plast Surg. 2014;30(2):157-571. 
  26. Horvathy DB, Simon M, Schwarz CM, et al. Serum albumin as a local therapeutic agent in cell therapy and tissue engineering. Biofactors. 2017;43(3):315-330. 
  27. Ausubel LJ, Lopez PM, Couture LA. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications. Methods Mol Biol. 2011;767:147-159. 
  28. Turovets N, Fair J, West R, et al. Derivation of high-purity de nitive endoderm from human parthenogenetic stem cells using an in vitro analog of the primitive streak. Cell Transplant. 2012;21(1):217-234. 
  29. Liu B, Earl HM, Baban D, et al. Melanoma cell lines express VEGF receptor KDR and respond to exogenously added VEGF. Biochem Biophys Res Commun. 1995;217(3):721-727. 
  30. Jaffee EM, Dang CV, Agus DB, et al. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol. 2017;18(11):e653-e706. 
  31. Meirelles Lda S, Fontes AM, Covas DT et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5-6):419-427. 
  32. Falanga V, Su Wen Qian V, Danielpour D, et al. Hypoxia upregulates the synthesis of TGF-β by human dermal fibroblasts. J Invest Dermatol. 1991;97(4):634-637. 
  33. de Gramont A, Faivre S, Raymond E. Novel TGF-β inhibitors ready for prime time in onco-immunology. Oncoimmunology. 2016;6(1):e1257453. 
  34. Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22-31. 
  35. Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 209;1:303–314. 
  36. Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25:435–457. 
  37. Semple F, Dorin JR. β-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun. 2012;4(4):337-348. 
  38. Lichtenstein A, Ganz T, Selested ME, et al. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood. 1986;68:1407-1410. 
  39. Biragy A, Ruf ni PA, Leifer CA, et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science. 2002;298:1025-1029. 
  40. Biragy A, Surenhu M, Yang D, et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol. 2001;167:6644-6653. 
  41. Warth A, Cortis J, Soltermann A, et al. Tumour cell proliferation (Ki-67) in non-small cell lung cancer: a critical reappraisal of its prognostic role. Br J Cancer. 2014;111(6):1222–1229.
  42. Henrique R, Azevedo R, Bento MJ, et al. Prognostic value of Ki-67 expression in localized cutaneous malignant melanoma. J Am Acad Dermatol. 2000;43(6):991-1000.
  43. Barrett TL, Smith KJ, Hodge JJ, et al. Immunohistochemical nuclear staining for p53, PCNA, and Ki-67 in different histologic variants of basal cell carcinoma. J Am Acad Dermatol. 1997;37(3 Pt 1):430-437.
  44. Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):4273-4278.
  45. Khor LY, Bae K, Paulus R, et al. MDM2 and Ki-67 predict for distant metastasis and mortality in men treated with radiotherapy and androgen deprivation for prostate cancer: RTOG 92-02. J Clin Oncol. 2009;27(19):3177-3184.
  46. Allegra CJ, Paik S, Colangelo LH, et al. Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with Dukes’ B and C colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project collaborative study. J Clin Oncol. 2003;21(2):241-250.
  47. Henrique R, Azevedo R, Bento MJ, et al. Prognostic value of Ki-67 expression in localized cutaneous malignant melanoma. J Am Acad Dermatol. 2000;43(6):991-1000.
  48. Johannessen AL, Torp SH. The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol Oncol Res. 2006;12:143-147.
  49. Xie Y, Chen L, Ma X, et al. Prognostic and clinicopathological role of high Ki-67 expression in patients with renal cell carcinoma: a systematic review and meta-analysis. Sci Rep. 2017;7:44281.
  50. Shiba M, Kohno H, Kakizawa K, et al. Ki-67 immunostaining and other prognostic factors including tobacco smoking in patients with resected nonsmall cell lung carcinoma. Cancer. 2000;89:1457-1465.
  51. Chirieac LR. Ki-67 expression in pulmonary tumors. Transl Lung Cancer Res. 2016;5:547-551.
  52. Battista MJ, Mantai N, Sicking I, et al. Ki-67 as an independent prognostic factor in an unselected cohort of patients with ovarian cancer: results of an explorative, retrospective study. Oncol Rep. 2014;31:2213-2219.
  53. Dwivedi SS, Khandeparkar SG, Joshi AR, et al. Study of immunohistochemical markers (CK-19, CD-56, Ki-67, p53) in differentiating benign and malignant solitary thyroid nodules with special reference to papillary thyroid carcinomas. J Clin Diagn Res. 2016;10:EC14-EC19.
  54. Kligman AM, Grove GL, Hirose R, et al. Topical tretinoin for photoaged skin. J Am Acad Dermatol. 1986;15(4 Pt 2):836-859.
  55. Gilchrest BA. Retinoids and photodamage. Br J Dermatol. 1992;127 Suppl 41:14-20.
  56. Weinstein GD, Nigra TP, Pochi PE, et al. Topical tretinoin for treatment of photodamaged skin. A multicenter study. Arch Dermatol. 1991;127(5):659-665.
  57. Bhawan J. Short- and long-term histologic effects of topical tretinoin on photodamaged skin. Int J Dermatol. 1998;37(4):286-292.
  58. Singh M, Griffiths CE. The use of retinoids in the treatment of photoaging. Dermatol Ther. 2006;19(5):297-305.
  59. Hubbard BA, Unger JG, Rohrich RJ. Reversal of skin aging with topical retinoids. Plast Reconstr Surg. 2014;133(4):481e-490e.
  60. Mukherjee S, Date A, Patravale V, et al. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006;1(4):327-348.
  61. Kim BH, Lee YS, Kang KS. The mechanism of retinol-induced irritation and its application to anti-irritant development. Toxicol Lett. 2003;146(1):65-73.
  62. Ascenso A, Ribeiro H, Marques HC, et al. Is tretinoin still a key agent for photoaging management? Mini Rev Med Chem. 2014;14(8):629-641.
  63. Torras H. Retinoids in aging. Clin Dermatol. 1996;14(2):207-215.
  64. Orfanos CE, Zouboulis CC, Almond-Roesler B, et al. Current use and future potential role of retinoids in dermatology. Drugs. 1997 Mar;53(3):358-388.
  65. Duell EA, Derguini F, Kang S, et al. Extraction of human epidermis treated with retinol yields retro-retinoids in addition to free retinol and retinyl esters. J Invest Dermatol. 1996;107(2):178-182.
  66. Griffiths CE, Finkel LJ, Tranfaglia MG, et al. An in vivo experimental model for effects of topical retinoic acid in human skin. Br J Dermatol. 1993;129(4):389-394.

AUTHOR CORRESPONDENCE