INTRODUCTION
More than 1,000,000 people are affected by non-melanoma skin cancer in the United States every year.1 Despite efforts to raise awareness and teach preventative measures such as sun avoidance, application of full-spectrum sunscreens and use of antioxidant creams, the incidences of both melanoma and non-melanoma skin cancers continue to increase annually and are estimated to be comparable
to the sum of all other cancers combined. Given these statistics, it is clear that current preventative measures against skin cancer are insufficient. In fact, neither sunscreens nor topical
antioxidants have been shown to effectively block the effects
of UV radiation. The level of antioxidants contained in the majority of skin creams is too low to have a major impact on free radical damage. Sunscreens absorb only a portion of UV radiation and many fail to be photostable following a few minutes
of sun exposure.2 Furthermore, observational studies have repeatedly found sunscreen use to be associated with higher risk of cutaneous melanoma and basal cell skin cancer. This correlation
is hypothesized to exist because sunscreens delay the appearance of sunburn, encouraging prolonged sun exposure and thereby increasing skin cancer risk.2
It has long been known that chronic exposure to UV radiation leads to DNA damage. This process underlies photoaging, a term that broadly encompasses changes in the skin associated with life-long exposure to the sun: wrinkling, skin laxity, erythema
and hyperpigmentation. More important clinically is the well-documented role of DNA damage as the inciting event in mutagenesis and tumor development.
Excessive UV radiation leads to DNA damage through several
mechanisms, both direct and indirect. When irradiated, the DNA of epidermal keratinocytes forms cyclobutane pyrimidine
dimers (CPDs) and 6-pyrimidine-4-pyrimidones (6-4 PPs).3 In addition, UV radiation triggers the production of oxygen radicals that alter the structure of nucleotides. These lesions, if not repaired, undermine the accuracy of DNA replication.
4 The end result is an accumulation of mutations that form the basis of tumor development.5
Though endogenous repair mechanisms exist to remove DNA lesions and damaged bases, these processes are not 100% efficient,
allowing some damage to escape. Moreover, studies have