Why Is Rosacea Considered to Be an Inflammatory Disorder?
The Primary Role, Clinical Relevance, and Therapeutic Correlations of Abnormal Innate Immune Response in Rosacea-Prone Skin

June 2012 | Volume 11 | Issue 6 | Original Article | 694 | Copyright © June 2012


  1. Subramanyan K. Role of mild cleansing in the management of patient skin. Dermatol Ther. 2004;17(4 suppl):26-34.
  2. Torok HM. Rosacea skin care. Cutis. 2000;66(4 Suppl):14-16.
  3. Marks R. The enigma of rosacea. J Dermatol Treat. 2007;18:326-328.
  4. Yamasaki K, Gallo RL. The molecular pathology of rosacea. J Dermatol Sci. 2009;55(2):77-81.
  5. Fleischer AB. Inflammation in rosacea and acne: implications for patient care. J Drugs Dermatol. 2011;10:614-620.
  6. Guzman-Sanchez DA, Ishiuji Y, et al. Enhanced skin blood flow and sensitivity to noxious heat stimuli in papulopustular rosacea. J Am Acad Dermatol. 2007;57:800-805.
  7. Oztas MO, Balk M, Ogus E, et al. The role of free radicals in the aetiopathogenesis of rosacea. Clin Exp Dermatol. 2003;28:188-192.
  8. Yamasaki K, Gallo RL. Rosacea as a disease of cathelicidins and skin innate immunity. J Invest Dermatol. 2011;15:53-62.
  9. Bevins CL, Liu FT. Rosacea: skin innate immunity gone awry? Nat Med. 2007;13(8):904-906.
  10. Yamasaki K, Kanada K, Macleod DT, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol. 2011;131:688-697.
  11. Rosina P, Zamperetti M, Giovannini A, et al. Videocapillaroscopic alterations in erythematotelangiectatic rosacea. J Am Acad Dermatol. 2006;54:100-104.
  12. De Y, Chen Q, Schmidt AP, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL-1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192:1069-1074.
  13. Koczulla R, von Degenfeld G, Kupatt C, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest. 2003;111:1665-72.
  14. Park HJ, Cho DH, Kim HJ, et al. Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J Invest Dermatol. 2009;129:843-50.
  15. Aubdool AA, Brain SD. Neurovascular aspects of skin neurogenic inflammation.J Invest Dermatol. 2011;15:33-39.
  16. Del Rosso JQ. Update on rosacea pathogenesis and correlation with medical therapeutic agents. Cutis. 2006;78:97-100.
  17. Martin DB, Gaspari AA. Toll-like receptors. In: Gaspari AA, Tyring SK, Eds. Clinical and Basic Immunology. Springer-Verlag, London, 2008, pp 67-84.
  18. Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442:39-44.
  19. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin Dmediated human antimicrobial response. Science. 2006;311:1770-1773.
  20. Lundwall A, Brattsand M. Kallikrein-related peptidases. Cell Mol Life. 2008;65:2019-2038.
  21. Sotiropoulo G, Pampalakis G, Diamandis EP. Functional roles of human kallikrein-related peptidases. J Biol Chem. 2009;284:32989-32994.
  22. Lazaridou E, Giannopoulou C, Fotiadou C, et al. The potential role of microorganisms in the development of rosacea. J Dtsch Dermatol Ges. 2011;9:21-25.
  23. McAleer MA, Lacey N, Powell FC. The pathophysiology of rosacea. G Ital Dermatol Venereol. 2009;144:663-671.
  24. Bielenberg DR, Bucana CD, Sanchez R, et al. Molecular regulation ofUVBinduced cutaneous angiogenesis. J Invest Dermatol. 1998;111:864-872.
  25. Kanada KN, Nakatsuji T, Gallo RL. Doxycycline indirectly inhibits proteolytic activation of tryptic kallikrein-related peptidases and activation of cathelicidin. J Invest Dermatol. 2012 (accepted for publication).
  26. Dirschka T, Tronnier H, Folster-Holst R. Epithelial barrier function and atopic diathesis in rosacea and perioral dermatitis. Br J Dermatol. 2004;150:1136-1141.
  27. Draelos ZD. Treating beyond the histology of rosacea. Cutis. 2004;74(3 Suppl):28-31.
  28. Torok HM. Rosacea skin care. Cutis. 2000;66(4 Suppl):14-16.
  29. Elias PM. The skin barrier as an innate immune element. Semin Immunopath. 2007;29:3-14.
  30. Voegeli R, Rawlins AV, Doppler S, et al. Increased basal transepidermal water loss leads to elevation of some but not all stratum corneum serine proteases. Int J Cos Sci. 2008; 30:435-42.
  31. Del Rosso JQ, Levin J. The clinical relevance of maintaining the functional integrity of the stratum corneum in both healthy and disease-affected skin. J Clinical Aesthet Dermatol. 2011;91:22-42.
  32. Pelle MT, Crawford GH, James WD. Rosacea II: therapy. J Am Acad Dermatol. 2004;51:499-512.
  33. Del Rosso JQ. Medical treatment of rosacea with emphasis on topical therapies. Expert Opin Pharmacother. 2004;5:5-13.
  34. McClellan KJ, Noble S. Topical metronidazole: a review of its uses in rosacea. Am J Clin Dermatol. 2000;1:191-199.
  35. Liu RH, Smith MK, Basta SA, et al. Azelaic acid in the treatment of papulopustular rosacea: a systematic review of randomized controlled trials. Arch Dermatol. 2006;142:1047-1052.
  36. Odom R, Dahl M, Dover J, et al. Standard management options for rosacea, part 2: options according to rosacea subtype. Cutis. 2009;84:97-104.
  37. Kennedy Carney C, Cantrell W, Elewski BE. Rosacea: a review of current topical, systemic and light based therapies. G Ital Dermatol Venereol. 2009;144:673-688.
  38. Del Rosso JQ, Webster GW, Jackson M, et al. Two randomized phase II clinical trials evaluating anti-inflammatory dose doxycycline (40 mg doxycycline, USP capsules) administered once daily for treatment of rosacea. J Am Acad Dermatol. 2007;56:791-801.
  39. Del Rosso JQ. Anti-inflammatory dose doxycycline in the treatment of rosacea. J Drugs Dermatol. 2009;8:664-668.
  40. Webster GF. An open-label, community-based, 12-week assessment of the effectiveness and safety of monotherapy with doxycycline 40 mg (30-mg immediate- release and 10-mg delayed-release beads). Cutis. 2010;86(5 Suppl):7-15.
  41. Ertl GA, Levine N, Kligman AM. A comparison of the efficacy of topical tretinoin and low-dose oral isotretinoin in rosacea. Arch Dermatol. 1994;130:319-24.
  42. Park H, Del Rosso JQ. Use of oral isotretinoin in the management of rosacea. J Clin Aesthet Dermatol. 2011;4:54-61.
  43. Del Rosso JQ. Advances in understanding and managing rosacea part 1: connecting the dots between pathophysiologic mechanisms and common clinical features of rosacea with emphasis on vascular changes and facial erythema. J Clinical Aesthet Dermatol. 2012 (in press).
  44. Del Rosso JQ. Advances in understanding and managing rosacea part 2: the central role, evaluation, and medical management of diffuse and persistent facial erythema of rosacea. J Clinical Aesthet Dermatol. 2012 (in press).
  45. Fowler J, Jarratt M, Moore A, et al. Once-daily topical brimonidine tartrate gel 0.5% is a novel treatment of moderate to severe facial erythema of rosacea: results of two multicenter, randomized and vehicle-controlled studies Br J Dermatol. 2011 Nov 2. doi: 10.1111/j.1365-2133.2011.10716.x. [Epub ahead of print].
  46. Shanler SD, Ondo AL. Successful treatment of erythema and flushing of rosacea using a topically applied selective alpha1-adrenergic receptor antagonist, oxymetazoline. Arch Dermatol. 2007;143:1369-1371.
  47. Miyachi Y. Potential antioxidant mechanism of action for metronidazole: implications for rosacea management. Adv Ther. 2001;18:237-243.
  48. Narayanan S, Hünerbein A, Getie M, et al. Scavenging properties of metronidazole on free oxygen radicals in a skin lipid model system. J Pharm Pharmacol. 2007;59:1125-1130.
  49. Akamatsu, H, Oguchi, M, Nishijima S, et al. The inhibition of free radical generation by human neutrophils through the synergistic effects of metronidazole with palmitoleic acid: a possible mechanism of action of metronidazole in rosacea and acne. Arch. Dermatol Res. 1990;282: 449-454.
  50. Beaufort N, Plaza K, Utzschneider D, et al. Interdependence of kallikrein related pedtidases in proteolytic networks. Biol Chem. 2010;391:581-587.
  51. Akamatsu, H, Komura J, Asada Y, et al. Inhibitory effect of azelaic acid on neutrophil functions: a possible cause for its efficacy in treating pathogenetically unrelated disease. Arch Dermatol Res. 1991;283:162-166.
  52. Yamasaki K, Gallo RK et al. Effect of azelaic acid on cathelicidin and serine protease expression. Poster presentation at Fall Clinical Dermatology Conference: October 15-18 2009; Las Vegas, NV.
  53. Sapadin AN, Fleischmajer R. Tetracyclines: non-antibiotic properties and their clinical implications. J Am Acad Dermatol. 2006;54:258-265.
  54. Korting HC, Schollmann C. Tetracycline actions relevant to rosacea treatment. Skin Pharmacol Physiol. 2009;22:287-294.
  55. Webster G, Del Rosso JQ. Anti-inflammatory activity of tetracyclines. Dermatol Clin. 2007;25:122-135.
  56. Golub LM, Lee HM, Ryan ME, et al. Tetracyclines inhibit connective tissue breakdown by multiple nonantimicrobial mecahanisms. Adv Derm Res. 1998;12:12-26.
  57. Del Rosso JQ, Schlessinger J, Werschler P. Comparison of anti-inflammatory dose doxycycline versus doxycycline 100 mg in the treatment of rosacea. J Drugs Dermatol. 2008;7:573-576.

Address for Correspondence

James Q. Del Rosso DO FAOCD880 Seven Hills Drive Suite 260 Henderson, Nevada 89052 jqdelrosso@yahoo.com