Do Antimicrobial Resistance Patterns Matter? An Algorithm for the Treatment of Patients With Impetigo

February 2021 | Volume 20 | Issue 2 | Original Article | 134 | Copyright © February 2021


Published online January 11, 2021

Lawrence A. Schachner MD FAAP FAAD,a Anneke Andriessen PhD,b Latanya T. Benjamin MD FAAP FAAD,c Cristina Claro MD,d Lawrence F. Eichenfield MD FAAP FAAD,e Susanna MR Esposito MD,f Linda Keller MD FAAP,g Leon Kircik MD FAAD,h Pearl C. Kwong MD FAAD,i Catherine McCuaig MD FAADj

aDivision of Pediatric Dermatology, Department of Dermatology & Cutaneous Surgery, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL
bRadboud UMC, Nijmegen, and Andriessen Consultants, Malden, The Netherlands
cIntegrated Medicine Science, Florida Atlantic University, Boca Raton, FL
dGrupo Português de Dermatologia Pediátrica, Department of Dermatology, Hospital da Luz Oeiras, Lisabon, Portugal
eDepartments of Dermatology and Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, CA
fDepartment of Medicine and Surgery, University of Parma, Parma, Italy
gSouth Miami Hospital, Baptist Hospital, Miami, FL
hIchan School of Medicine at Mount Sinai, New York, NY; Indiana University Medical Center, Indianapolis, IN; Physicians Skin Care, PLLC, Louisville, KY, DermResearch, PLLC, Louisville, KY
iJacksonville, FL
jDivision of Dermatology, Sainte-Justine University Medical Center, Montreal; University of Montreal, Montreal, QC, Canada

manuscript was conducted online. The international panel was able to adapt to the current situation and finalized the review process in good order.

CONCLUSION

An evidence-based impetigo treatment algorithm was developed to address the treatment of impetigo for pediatric and adult populations. When recommending treatment, antimicrobial resistance must be taken into account when selecting effective treatment for impetigo patients.

The presented algorithm for impetigo treatment, including a newer safe and effective topical antibiotic as a first-line treatment, could be an essential step in antimicrobial stewardship.

DISCLOSURES

All authors contributed to the development of the algorithm and the review of the manuscript and agree with its content.

Funding: This work was supported by an unrestricted educational grant from Biofrontera, Inc and Ferrer Spain.

REFERENCES

  1. James WD, Elston DM, Berger TG. Andrews' Diseases of the Skin: Clinical Dermatology. Twelfth edition/ed. Philadelphia, PA: Elsevier; 2016.
  2. van der Wouden JC, Koning S. Treatment of impetigo in resource-limited settings. The Lancet. 2014;384(9960):2090-2091.
  3. Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. Journal of Investigative Dermatology. 2014;134(6):1527-1534.
  4. Bowen AC, Mahe A, Hay RJ, et al. The Global Epidemiology of Impetigo: A Systematic Review of the Population Prevalence of Impetigo and Pyoderma. PLoS One. 2015;10(8):e0136789.
  5. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10-52. https://www.ncbi.nlm.nih.gov/pubmed/24973422
  6. Simkin DJ, Grossberg AL, Cohen BA. Bullous impetigo rapid diagnostic and therapeutic quiz: A model for assessing basic dermatology knowledge of primary care providers. Pediatr Dermatol. 2016 Nov;33(6):627-631. doi: 10.1111/pde.12974.
  7. Suaya JA, Mera RM, Cassidy A, et al. Incidence and cost of hospitalizations associated with staphylococcus aureus skin and soft tissue infections in the United States from 2001 through 2009. BMC Infect Dis. 2014 Jun 2;14:296. doi: 10.1186/1471-2334-14-296.
  8. Del Rosso JQ, Webster GF, Rosen T, et al. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society. J Clin Aesthet Dermatol. 2016;9:18-24.
  9. Barbieri JS, Bhate K, Hartnett KP, Fleming-Dutra KE, Margolis DJ. Trends in oral antibiotic prescription in dermatology, 2008 to 2016. JAMA Dermatol. 2019;155(3):290-297. doi:10.1001/jamadermatol.2018.4944
  10. Schachner LA, Torello A, Grada A, Eichenfield LF, et al. Treatment of impetigo in the pediatric population: Consensus and future directions. J Drugs Dermatol. 2020;19(3) 4679.
  11. McNeil JC, Hulten KG, Kaplan SL, Mason EO. Decreased susceptibilities to retapamulin, mupirocin, and chlorhexidine among Staphylococcus aureus isolates, causing skin and soft tissue infections in otherwise healthy children. Antimicrob Agents Chemother. 2014;58(5):2878-2883. https://www.ncbi. nlm.nih.gov/pubmed/24614375.
  12. Bessa GR, Quinto VP, Machado DC, et al. Staphylococcus aureus resistance to topical antimicrobials in atopic dermatitis. Anais Brasileiros de Dermatologia. 2016;91(5):604-610.
  13. Edslev SM, Clausen ML, Agner T, et al. Genomic analysis reveals different mechanisms of fusidic acid resistance in Staphylococcus aureus from Danish atopic dermatitis patients. J Antimicrob Chemother. 2018 1;73(4):856-961.
  14. Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ, Lauren CT. High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrobial Agents and Chemotherapy. 2015;59(6):3350-3356.
  15. Doudoulakakis A, Spiliopoulou I, Spyridis N, Giormezis N, Kopsidas J, Militsopoulou M, Lebessi E, Tsolia M. Emergence of a Staphylococcus aureus clone resistant to mupirocin and fusidic acid carrying exotoxin genes and causing mainly skin infections. J Clin Microbiol. 2017; 55: 2529−37.
  16. McMillan SS, King M, Tully MP. How to use the nominal group and Delphi techniques. Internat J Clinical Pharmacy. 2016;38(3):655-662.
  17. Søndergaard E, Ertmann RK, Reventlow S, Lykke K. Using a modified nominal group technique to develop general practice. BMC Family Practice. 2018;19(1):117.
  18. Evans GW. Artificial intelligence: Where we came from, where we are now, and where we are going. University of Victoria. Jul 11 2017. Available at: https://dspace.library.uvic.ca/handle/1828/8314 (accessed 2020).
  19. Hebert AA, Albareda N, Rosen T, Torrelo A, Grimalt R, Rosenberg N et al. Topical antibacterial agent for treatment of adult and pediatric patients with impetigo: pooled analysis of phase 3 clinical trials. J Drugs Dermatol. 2018;17(10):1046-1052.
  20. Sommer LL, Reboli AC, Heyman WR. Bacterial Diseases. In: Dermatology. Bologna J, Schaffer JV, Cerroni L. Dermatology Ed. 4th Ed; pp 1259 Elsevier, London 2018
  21. Global Action Plan on Antimicrobial resistances (GAP on AMR) 2015; http:// antibiotic-action.com/who-releases-global-action-plan-on-antimicrobialresistance/
  22. Bassetti M, Carnelutti A, Righi E. The role of methicillin-resistant Staphylococcus aureus in skin and soft tissue infections. Current Opinion Infect Diseases. 2017;30(2):150-157.
  23. Lim JS, Park H-s, Cho S, Yoon H-S. Antibiotic susceptibility and treatment response in bacterial skin infection. Annals Dermatol. 2018;30(2):186-191.
  24. Chosidow O, Hay RJ. Control of scabies and secondary impetigo: optimizing treatment effectiveness in endemic settings. The Lancet Infectious Diseases. 2019;19(5):454-456.
  25. D'Cunha NM, Peterson G, Baby K, Thomas J. Impetigo: A need for new therapies in a world of increasing antimicrobial resistance. J Clinical Pharmacy and Therapeutics. 2018;43(1):150-153.
  26. Gibbons JA, Smith HL, Kumar SC, et al. Antimicrobial stewardship in the treatment of skin and soft tissue infections. Am J Infect Control. 2017;45(11):1203-1207.
  27. Kaplan SL. Staphylococcus aureus infections in children: The implications of changing trends. Pediatrics. 2016;137(4):2016-0101.
  28. Zabielinski M, McLeod MP, Aber C, Izakovic J, Schachner LA. Trends and antibiotics susceptibility patterns of methicillin-resistant and methicillinsensitive Staphylococcus aureus in an outpatient dermatology facility. JAMA Dermatol. 2013;149(4):427-32.
  29. Liu Y, Xu Z, et al. Characterization of community-associated Staphylococcus aureus skin and soft-tissue infections: a multicenter study in China. Emerg Microbes Infect. 2016; 5(12):e127
  30. Liang Y, Tu C, El-Sayed Ahmed, et al. Antimicrobial resistance, virulence genes profiling and molecular relatedness of methicillin-resistant Staphylococcus aureus strains isolated from hospitalized patients in Guangdong Province, China. 2019 12;447-459.
  31. Sutter DM, Chukwuma U, Dzialowy N, Maranich A, Hospenthal D. Changing susceptibility of Staphylococcus aureus in a U.S. pediatric population. Pediatrics. 2016 April;137(4). Pediatrics. 2016;137(4):e20153099
  32. Williamson D, Carter G, Howden B. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev. 2017 30:827-860.
  33. Park SH, Kim JK, Park K. In vitro antimicrobial activities of fusidic acid and retapamulin against mupirocin- and methicillin-resistant Staphylococcus aureus. Ann Dermatol. 2015 27(5):551-556.
  34. McNeil JC, Hulten KG, Kaplan SL, Mason EO. Decreased susceptibilities to retapamulin, mupirocin, and chlorhexidine amoung Staphylococcus aureus isolates causing skin and soft tissue infections in otherwise healthy children. Antimicrob Agents Chemother. 2014: 58(5) 2878-2883.
  35. Wang JT, Huang IW, et al. Increasing resistance to fusidic acid amount clinical isolates of MRSA. J Antimicrob Chemother. 2017 72(2):616-18.
  36. Abouelfetouh A, Kassen M, Naguib M et al. Investigation and treatment of fusidic acid resistance among methicillin-resistant staphylococcal isolates from Egypt. Microb Drug Resist. 2017;23(1)8-17.
  37. Koning S, Van Der Sande R, Verhagen A, Van Suijlekom-smit L, Morris A, Butler C, et al. Interventions for impetigo (Review). Cochrane Library. Cochrane Database of Systemic Reviews. John Wiley & Sons; 2012.
  38. NICE guideline [NG153], impetigo: antimicrobial prescribing. Published date: Feb 26 2020, https://www.nice.org.uk/guidance/ng153
  39. Schachner L et al. Topical Ozenoxacin cream 1% for Impetigo: A review. J Drugs Dermatol. 2019;18(7):655-661.
  40. Vila J, Hebert AA, Torrelo A, et al. Ozenoxacin: a review of preclinical and clinical efficacy. Expert review of anti-infective therapy. 2019;17(3):159-168.
  41. López Y, Tato M, Gargallo-Viola D, Canton R, et al. Mutant prevention concentration of ozenoxacin for quinolone-susceptible or -resistant Staphylococcus aureus and Staphylococcus epidermidis. PLoS One. 2019 Oct 9;14(10). Doi.org/10.1371/journal.pone.0223326
  42. Morrissey I, Canton R, Vila J, et al Microbiological profile of ozenoxacin. Future Microbiol. 2019;14(6):773-787. https://www.ncbi.nlm.nih.gov/ pubmed/31132895
  43. Canton R, Morrissey I, Vila J, Tato M, García-Castillo M, López Y, Gargallo- Viola D, Zsolt I. Comparative in vitro antibacterial activity of ozenoxacin against Gram-positive clinical isolates. Future Microbiol. 2018 May 1;13:3-19. doi: 10.2217/fmb-2017-0289. PubMed PMID: 29745242.
  44. Rosen T, Albareda N, Rosenberg N, et al. efficacy and safety of ozenoxacin cream for treatment of adult and pediatric patients with impetigo: a randomized clinical trial. JAMA Dermatol. 2018;154(7):806-813.
  45. Gropper S, Albareda N, Chelius K, et al. Ozenoxacin 1% cream in the treatment of impetigo: a multicenter, randomized, placebo-and retapamulincontrolled clinical trial. Future Microbiology. 2014;9(9):1013-1023.
  46. Hebert AA, Rosen T, Albareda López N, Zsolt I, Masramon X. Safety and efficacy profile of ozenoxacin 1% cream in pediatric patients with impetigo. Int J Womens Dermatology. 2019;6(2):109-115. https://doi.org/10.1016/j. ijwd.2019.10.008.
  47. Torrelo A, Grimalt R, Zsolt I, et al. Ozenoxacin, a new effective and safe topical treatment for impetigo in children and adolescents. Dermatology. 2020;236(3):199-207. doi: 10.1159/000504536.
  48. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews. 2017;41(3):430-449.

AUTHOR CORRESPONDENCE

Anneke Andriessen PhD anneke.a@tiscali.nl