Do Antimicrobial Resistance Patterns Matter? An Algorithm for the Treatment of Patients With Impetigo

February 2021 | Volume 20 | Issue 2 | Original Article | 134 | Copyright © February 2021


Published online January 11, 2021

Lawrence A. Schachner MD FAAP FAAD,a Anneke Andriessen PhD,b Latanya T. Benjamin MD FAAP FAAD,c Cristina Claro MD,d Lawrence F. Eichenfield MD FAAP FAAD,e Susanna MR Esposito MD,f Linda Keller MD FAAP,g Leon Kircik MD FAAD,h Pearl C. Kwong MD FAAD,i Catherine McCuaig MD FAADj

aDivision of Pediatric Dermatology, Department of Dermatology & Cutaneous Surgery, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL
bRadboud UMC, Nijmegen, and Andriessen Consultants, Malden, The Netherlands
cIntegrated Medicine Science, Florida Atlantic University, Boca Raton, FL
dGrupo Português de Dermatologia Pediátrica, Department of Dermatology, Hospital da Luz Oeiras, Lisabon, Portugal
eDepartments of Dermatology and Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, CA
fDepartment of Medicine and Surgery, University of Parma, Parma, Italy
gSouth Miami Hospital, Baptist Hospital, Miami, FL
hIchan School of Medicine at Mount Sinai, New York, NY; Indiana University Medical Center, Indianapolis, IN; Physicians Skin Care, PLLC, Louisville, KY, DermResearch, PLLC, Louisville, KY
iJacksonville, FL
jDivision of Dermatology, Sainte-Justine University Medical Center, Montreal; University of Montreal, Montreal, QC, Canada

Abstract
Background: Impetigo, a highly contagious bacterial skin infection commonly occurring in young children, but adults may also be affected. The superficial skin infection is mainly caused by Staphylococcus aureus (S. aureus) and less frequently by Streptococcus pyogenes (S. pyogenes). Antimicrobial resistance has become a worldwide concern and needs to be addressed when selecting treatment for impetigo patients. An evidence-based impetigo treatment algorithm was developed to address the treatment of impetigo for pediatric and adult populations.
Methods: An international panel of pediatric dermatologists, dermatologists, pediatricians, and pediatric infectious disease specialists employed a modified Delphi technique to develop the impetigo treatment algorithm. Treatment recommendations were evidence-based, taking into account antimicrobial stewardship and the increasing resistance to oral and topical antibiotics.
Results: The algorithm includes education and prevention of impetigo, diagnosis and classification, treatment measures, and follow-up and distinguishes between localized and widespread or epidemic outbreaks of impetigo. The panel adopted the definition of localized impetigo of fewer than ten lesions and smaller than 36 cm2 area affected in patients of two months and up with no compromised immune status. Resistance to oral and topical antibiotics prescribed for the treatment of impetigo such as mupirocin, retapamulin, fusidic acid, have been widely reported.
Conclusions: When prescribing antibiotics, it is essential to know the local trends in antibiotic resistance. Ozenoxacin cream 1% is highly effective against S. pyogenes and S. aureus, including methycyllin-susceptible and resistant strains (MRSA), and may be a suitable option for localized impetigo.

J Drugs Dermatol. 20(2):134-142. doi:10.36849/JDD.2021.5475

THIS ARTICLE HAD BEEN MADE AVAILABLE FREE OF CHARGE. PLEASE SCROLL DOWN TO ACCESS THE FULL TEXT OF THIS ARTICLE WITHOUT LOGGING IN. NO PURCHASE NECESSARY. PLEASE CONTACT THE PUBLISHER WITH ANY QUESTIONS.

INTRODUCTION

Impetigo is a highly contagious bacterial skin infection, caused mainly by Staphylococcus aureus (S. aureus), and less frequently by Streptococcus pyogenes (S. pyogenes) or both organisms.1,2 In developing countries, group A S. pyogenes is a common cause of non-bullous impetigo. Impetigo occurs typically in children aged 2 to 5 years but may affect younger and older children as well as adults.1,2 The worldwide prevalence of impetigo was estimated to be more than 140 million cases in 2010.3,4 The global median childhood prevalence is estimated to be 12.3% with a peak in tropical, low-income settings.4 In general practices in Western Europe, impetigo is the most common superficial skin infection in young