ARTICLE: Models to Study Skin Lipids in Relation to the Barrier Function: A Modern Update on Models and Methodologies Evaluating Skin Barrier Function

April 2021 | Volume 20 | Issue 4 | Supplement Individual Articles | s10 | Copyright © April 2021


Published online April 6, 2021

Rebecca Barresi, Hawasatu Dumbuya PhD, Xue Liu PhD, I-Chien Liao PhD

L’Oréal Research and Innovation, Clark, NJ

29. Barker CL, Mchale MT, Gillies AK, et al. The development and characterization of an in vitro model of psoriasis. 2004. doi:10.1111/j.0022-202X.2004.23435.x
30. Jean J, Lapointe M, Soucy J, Pouliot R. Development of an in vitro psoriatic skin model by tissue engineering. doi:10.1016/j.jdermsci.2008.07.009
31. Bernard G, Auger M, Soucy J, Pouliot R. Physical characterization of the stratum corneum of an in vitro psoriatic skin model by ATR-FTIR and Raman spectroscopies. Biochim Biophys Acta - Gen Subj. 2007;1770(9):1317-1323. doi:https://doi.org/10.1016/j.bbagen.2007.06.014
32. Kamsteeg M, Bergers M, de Boer R, et al. Type 2 helper T-cell cytokines induce morphologic and molecular characteristics of atopic dermatitis in human skin equivalent. Am J Pathol. 2011;178(5):2091-2099. doi:10.1016/j. ajpath.2011.01.037
33. Gschwandtner M, Mildner M, Mlitz V, et al. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy Eur J Allergy Clin Immunol. 2013;68(1):37-47. doi:10.1111/ all.12051
34. Niehues H, Schalkwijk J, van Vlijmen-Willems IMJJ, et al. Epidermal equivalents of filaggrin null keratinocytes do not show impaired skin barrier function. J Allergy Clin Immunol. 2017;139(6):1979-1981.e13. doi:10.1016/j. jaci.2016.09.016
35. Liu X, Michael S, Bharti K, Ferrer M, Song MJ. A biofabricated vascularized skin model of atopic dermatitis for preclinical studies. Biofabrication. 2020;12(3):35002. doi:10.1088/1758-5090/ab76a1
36. Danso MO, Berkers T, Mieremet A, et al. An ex vivo human skin model for studying skin barrier repair. Exp Dermatol. 2015. doi:10.1111/exd.12579
37. Döge N, Avetisyan A, Hadam S, et al. Assessment of skin barrier function and biochemical changes of ex vivo human skin in response to physical and chemical barrier disruption. Eur J Pharm Biopharm. 2017. doi:10.1016/j. ejpb.2016.12.012
38. Berardesca E, Pirot F, Singh M, Maibach H. Differences in stratum corneum pH gradient when comparing white caucasian and black African-American skin. Br J Dermatol. 1998. doi:10.1046/j.1365-2133.1998.02513.x
39. Greene RS, Downing DT, Pochi PE, Strauss JS. Anatomical variation in the amount and composition of human skin surface lipid. J Invest Dermatol. 1970. doi:10.1111/1523-1747.ep12280318
40. Ya-Xian Z, Suetake T, Tagami H. Number of cell layers of the stratum corneum in normal skin relationship to the anatomical location an the body, age, sex and physical parameters. Arch Dermatol Res. 1999. doi:10.1007/ s004030050453
41. Berkers T, Boiten WA, Absalah S, et al. Compromising human skin in vivo and ex vivo to study skin barrier repair. Biochim Biophys Acta - Mol Cell Biol Lipids. 2019. doi:10.1016/j.bbalip.2019.04.005
42. Berkers T, Visscher D, Gooris GS, Bouwstra JA. Topically Applied Ceramides Interact with the Stratum Corneum Lipid Matrix in Compromised Ex Vivo Skin. Pharm Res. 2018. doi:10.1007/s11095-017-2288-y
43. Berkers T, van Dijk L, Absalah S, van Smeden J, Bouwstra JA. Topically applied fatty acids are elongated before incorporation in the stratum corneum lipid matrix in compromised skin. Exp Dermatol. 2017. doi:10.1111/exd.13116
44. Jungersted JM, Hiøgh JK, Hellgren LI, Jemec GBE, Agner T. Ethnicity and stratum corneum ceramides. Br J Dermatol. 2010. doi:10.1111/j.1365- 2133.2010.10080.x
45. Gunathilake R, Schurer NY, Shoo BA, et al. PH-Regulated mechanisms account for pigment-type differences in epidermal barrier function. J Invest Dermatol. 2009. doi:10.1038/jid.2008.442
46. Jacobi U, Weigmann HJ, Ulrich J, Sterry W, Lademann J. Estimation of the relative stratum corneum amount removed by tape stripping. Ski Res Technol. 2005. doi:10.1111/j.1600-0846.2005.00094.x
47. Wilhelm KP, Wilhelm D, Bielfeldt S. Models of wound healing: an emphasis on clinical studies. Ski Res Technol. 2017. doi:10.1111/srt.12317
48. Ahlström MG, Gjerdrum LMR, Larsen HF, et al. Suction blister lesions and epithelialization monitored by optical coherence tomography. Ski Res Technol. 2018. doi:10.1111/srt.12391
49. Larsen HF, Ahlström MG, Gjerdrum LMR, et al. Noninvasive measurement of reepithelialization and microvascularity of suction-blister wounds with benchmarking to histology. Wound Repair Regen. 2017. doi:10.1111/wrr.12605
50. Smith TJ, Wilson MA, Young AJ, Montain SJ. A suction blister model reliably assesses skin barrier restoration and immune response. J Immunol Methods. 2015. doi:10.1016/j.jim.2015.01.002
51. Fartasch M. Ultrastructure of the epidermal barrier after irritation. Microsc Res Tech. 1997. doi:10.1002/(SICI)1097-0029(19970501)37:3<193::AIDJEMT4> 3.0.CO;2-P
52. Ponec M, Kempenaar J. Use of human skin recombinants as an in vitro model for testing the irritation potential of cutaneous irritants. Skin Pharmacol Physiol. 1995. doi:10.1159/000211330
53. Heinemann C, Paschold C, Fluhr J, et al. Induction of a hardening phenomenon by repeated application of SLS: Analysis of lipid changes in the stratum corneum. Acta Derm Venereol. 2005. doi:10.1080/00015550410026362
54. Löffler H, Effendy I. Skin susceptibility of atopic individuals. Contact Dermatitis. 1999. doi:10.1111/j.1600-0536.1999.tb06056.x
55. Amaro-Ortiz A, Yan B, D’Orazio JA. Ultraviolet radiation, aging and the skin: Prevention of damage by topical cAMP manipulation. Molecules. 2014. doi:10.3390/molecules19056202
56. Wefers H, Melnik BC, Flür M, et al. Influence of UV irradiation on the composition of human stratum corneum lipids. J Invest Dermatol. 1990. doi:10.1111/1523-1747.ep12476124
57. Biniek K, Levi K, Dauskardt RH. Solar UV radiation reduces the barrier function of human skin. Proc Natl Acad Sci U S A. 2012. doi:10.1073/pnas.1206851109
58. Lim SH, Kim SM, Lee YW, Ahn KJ, Choe YB. Change of biophysical properties of the skin caused by ultraviolet radiation-induced photodamage in Koreans. Ski Res Technol. 2008. doi:10.1111/j.1600-0846.2007.00272.x
59. Seité S, Medaisko C, Christiaens F, et al. Biological effects of simulated ultraviolet daylight: A new approach to investigate daily photoprotection. Photodermatol Photoimmunol Photomed. 2006. doi:10.1111/j.1600- 0781.2006.00209.x
60. Kikuchi-Numagami K, Suetake T, Yanai M, et al. Functional and morphological studies of photodamaged skin on the hands of middle-aged Japanese golfers. Eur J Dermatology. 2000.
61. Rogers J, Harding C, Mayo A, et al. Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res. 1996. doi:10.1007/ s004030050138
62. Mao-Qiang M, Feingold KR, Thornfeldt CR, Elias PM. Optimization of physiological lipid mixtures for barrier repair. J Invest Dermatol. 1996. doi:10.1111/1523-1747.ep12340135
63. Di Nardo A, Wertz P, Giannetti A, Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol. 1998. doi:10.1080/00015559850135788
64. Lynde CW AAA. A cohort study on a ceramide-containing cleanser and moisturizer used for atopic dermatitis. Randomized Control Trial. 2014.
65. Draelos ZD. The effect of ceramide-containing skin care products on eczema resolution duration. Cutis. 2008.
66. Danby SG, Andrew P V, Brown K, et al. An investigation of the skin barrier restoring effects of a cream and lotion containing ceramides in a multivesicular emulsion in people with dry, eczema-prone, skin: the RESTORE Study Phase 1. Dermatol Ther (Heidelb). 2020. doi:10.1007/s13555-020- 00426-3
67. James Q Del Rosso 1. The use of moisturizers as an integral component of topical therapy for rosacea: clinical results based on the Assessment of Skin Characteristics Study. Cutis. 2009.
68. Draelos ZD, Baalbaki NH, Raab S, Colón G. The effect of a ceramidecontaining product on stratum corneum lipid levels in dry legs. J Drugs Dermatol. 2020. doi:10.36849/JDD.2020.4796
69. Cannizzaro M V., Dattola A, Garofalo V, Del Duca E, Bianchi L. Reducing the oral Isotretinoin skin side effects: Efficacy of 8% omega-ceramides, hydrophilic sugars, 5% niacinamide cream Compound in acne patients. G Ital di Dermatologia e Venereol. 2018. doi:10.23736/S0392-0488.17.05742-X 

AUTHOR CORRESPONDENCE