ARTICLE: IL-23 Versus IL-17 in the Pathogenesis of Psoriasis: There Is More to the Story Than IL-17A

August 2019 | Volume 18 | Issue 8 | Supplement Individual Articles | 202 | Copyright © August 2019


April W. Armstrong MD MPH,ª Charlotte Read MBBS BSc,ª Craig L. Leonardi MD,b Leon H. Kircik MDc

aDepartment of Dermatology, University of Southern California Keck School of Medicine, Los Angeles, CA bSaint Louis University School of Medicine, Saint Louis, MO; Central Dermatology Saint Louis, MO cIcahn School of Medicine at Mount Sinai, NY; Indiana Medical Center, Indianapolis, IN; Physicians Skin Care, PLLC; Skin Sciences, PLLC; DermResearch, PLLC, Louisville, KY

These novel findings suggest that targeting IL-17A alone may be inadequate to control psoriasis, particularly in patients with severe and recalcitrant disease. Additionally, compared to patients who continued treatment with ustekinumab, patients who received brodalumab had superior rates of PASI-75 (72.6% vs 61.7%), PASI-90 (58.1% vs 25.2%), and PASI-100 (36.3% vs 5.4%).90 Proposed mechanisms to explain these findings of superiority of IL-17RA blockade (brodalumab) over IL12/23 blockade (ustekinumab) in psoriasis include incomplete suppression of IL-17 because IL-17 subtypes may still be expressed independent of TH17 cells. IL-17E in Psoriasis

Pathogenesis and Therapies That Target IL-17E
In psoriasis, the role of IL-17E is not understood. While some investigators have found IL-17E to have anti-inflammatory effects, others found IL-17E to have proinflammatory effects.16,57 The inflammatory effects of IL-17E may occur by activating macrophages to release inflammatory cytokines such as TNF-α and neutrophil chemokines.57 Evidence also suggests that IL-17E may be involved in the recruitment of innate immune cells.55,64

IL-17E signals via a heterodimeric receptor complex consisting of IL-17RA and IL-17RB and has a 16% homology with IL-17A.58,64 IL-17E is produced by both epithelial and immune cells.16 Epithelial cells that produce IL-17E derive from the lung, gastrointestinal tract, and uterus.16 Immune cells that produce IL-17E include intraepithelial lymphocytes, alveolar macrophages, eosinophils, NKT, and TH2 cells.16 Brodalumab is the only FDA-approved psoriasis therapy that targets IL-17E via IL- 17RA inhibition (Figure 2).81

CONCLUSION

In conclusion, psoriasis pathogenesis involves a complex interplay between IL-23 and IL-17, and both cytokines play crucial roles in psoriasis. IL-17 subtypes such as IL-17A, IL-17C, and IL-17F are abundant in psoriatic lesions. Furthermore, IL-17 subtypes can be produced by other non-TH17 cells. Thus, IL-17 produced by non-TH17 cells may contribute to pathogenesis of psoriasis and psoriatic arthritis. Therapies that target IL-23 and IL-17 have been shown to be effective in psoriasis. Importantly, aside from the therapeutic target, other factors such as binding affinity, dosing, and low immunogenicity profile may also play a key role in the efficacy of these psoriasis therapies.

DISCLOSURE

AWA has served as investigator or consultant to AbbVie, Janssen, Lilly, Leo, Novartis, UCB, Ortho Dermatologics, Dermira, Sanofi Genzyme, Regeneron, BMS, Dermavant, and Modernizing Medicine.

CLL served as a consultant/advisory board member for AbbVie, Amgen, Boehringer Ingelheim, Celgene Corporation, Dermira, Eli Lilly and Company, Janssen Pharmaceuticals, Inc., Leo Pharma A/S, Ortho Dermatologics, Pfizer, Inc., Sandoz (a Novartis Company), UCB, and Vitae; as a speaker for AbbVie, Amgen, Celgene Corporation, Eli Lilly and Company, Novartis, Sun Pharmaceuticals, Ltd., and UCB; as a principal investigator for Actavis, Amgen, Boehringer Ingelheim, Celgene Corporation, Cellceutix, Coherus Biosciences, Corrona, Dermira, Eli Lilly and Company, Galderma Laboratories, L.P., Glenmark Generics, Inc., Janssen Pharmaceuticals, Inc., Leo Pharma, Inc., Merck, Novartis, Novella, Pfizer, Inc., Sandoz (a Novartis Company), Sienna Biopharmaceuticals, Stiefel a GSK company, UCB, and Warner Chillcott.

LHK has been either an investigator, consultant, advisory board member, or a speaker for Amgen, Celgene, Ely Lilly, Novartis, OrthoDermatologics, Pfizer, SunPharma, and UCB.

CR has no conflicts to disclose.

REFERENCES

  1. Greb JE, Goldminz AM, Elder JT, et al. Psoriasis. Nat Rev Dis Prim. 2016;2:16082. https://doi.org/10.1038/nrdp.2016.82.
  2. Johnson-Huang LM, Lowes MA, Krueger JG. Putting together the psoriasis puzzle: an update on developing targeted therapies. Dis Model Mech. 2012;5:423–433. doi:10.1242/dmm.009092.
  3. Mueller W, Herrmann B. Beeinflussung der psoriasis durch cyclosporin A. Dtsch Medizinische Wochenschrift. 1979. doi:10.1017/S1041610210000074.
  4. Gaspari AA. Innate and adaptive immunity and the pathophysiology of psoriasis. J Am Acad Dermatol. 2006. doi:10.1016/j.jaad.2005.10.057.
  5. Alwan W, Nestle FO. Pathogenesis and treatment of psoriasis: Exploiting pathophysiological pathways for precision medicine. Clin Exp Rheumatol. 2015;33(5 Suppl 93):S2-6.
  6. Pariser D, Frankel E, Schlessinger J, et al. Efficacy of secukinumab in the treatment of moderate to severe plaque psoriasis in the north american subgroup of patients: Pooled analysis of four phase 3 studies. Dermatol Ther (Heidelb). 2018. doi:10.1007/s13555-017-0211-4.
  7. Papp KA, Leonardi CL, Blauvelt A, et al. Ixekizumab treatment for psoriasis: integrated efficacy analysis of three double-blinded, controlled studies (UNCOVER-1, UNCOVER-2, UNCOVER-3). Br J Dermatol. 2018. doi:10.1111/ bjd.16050.
  8. Farahnik B, Beroukhim K, Abrouk M, et al. Brodalumab for the treatment of psoriasis: A review of phase III trials. Dermatol Ther (Heidelb). 2016. doi:10.1007/s13555-016-0121-x.
  9. Nestle FO, Kaplan DH, Barker J. Mechanisms of disease psoriasis. N Engl J Med. 2009. doi:10.1109/APCCAS.2002.1114931. 
  10. Gottlieb AB, Chamian F, Masud S, et al. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol. 2005. doi:10.4049/jimmunol.175.4.2721.
  11. Zaba LC, Cardinale I, Gilleaudeau P, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183-3194. doi:10.1084/jem.20071094.
  12. Yost J, Gudjonsson J. The role of TNF inhibitors in psoriasis therapy: new implications for associated comorbidities. F1000 Med Rep. 2009. doi:10.3410/M1-30.
  13. Schön MP, Erpenbeck L. The interleukin-23/interleukin-17 axis links adaptive and innate immunity in psoriasis. Front Immunol. 2018. doi:10.3389/ fimmu.2018.01323.
  14. Zeichner J, Armstrong AW. The role of il-17 in the pathogenesis and treatment of psoriasis. J Clin Aesthet Dermatol. 2016;9(6 Suppl 1):S3–S6.
  15. Maddur MS, Miossec P, Kaveri S V., Bayry J. Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012. doi:10.1016/j.ajpath.2012.03.044.
  16. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009. doi:10.1038/nri2586.
  17. Lin AM, Rubin CJ, Khandpur R, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol. 2011;187(1):490- 500. doi:10.4049/jimmunol.1100123.
  18. Chiricozzi A, Krueger JG. IL-17 targeted therapies for psoriasis. Expert Opin Investig Drugs. 2013. doi:10.1517/13543784.2013.806483. 
  19. Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A. IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol. 2011. doi:10.4049/jimmunol.1001001.
  20. Puig L. The role of IL 23 in the treatment of psoriasis. Expert Rev Clin Immunol. 2017. doi:10.1080/1744666X.2017.1292137.
  21. Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG. The majority of epidermal T cells in psoriasis vulgaris lesions can produce type 1 cytokines, interferon-γ, interleukin-2, and tumor necrosis factor-α, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: A type 1 differentiation bias is al. J Invest Dermatol. 1999;113(5):752-759. doi:10.1046/j.1523- 1747.1999.00749.x.
  22. McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 2006. doi:10.1016/j.it.2005.10.003.
  23. Mak RKH, Hundhausen C, Nestle FO. Progress in understanding the immunopathogenesis of psoriasis. Actas Dermosifiliogr. 2009. doi:10.1016/ S0001-7310(09)73372-1.
  24. Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 2011;131(3):677-687. doi:10.1038/jid.2010.340. 
  25. Martin DA, Towne JE, Kricorian G, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J Invest Dermatol. 2013;133(1):17-26. doi:10.1038/jid.2012.194.
  26. Zaba LC, Suárez-Fariñas M, Fuentes-Duculan J, et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol. 2009. doi:10.1016/j. jaci.2009.08.046.
  27. Marinoni B, Ceribelli A, Massarotti MS, Selmi C. The Th17 axis in psoriatic disease: Pathogenetic and therapeutic implications. Autoimmun Highlights. 2014. doi:10.1007/s13317-013-0057-4.
  28. Johnston A, Guzman AM, Swindell WR, Wang F, Kang S, Gudjonsson JE. Early tissue responses in psoriasis to the antitumour necrosis factor-α biologic etanercept suggest reduced interleukin-17 receptor expression and signalling. Br J Dermatol. 2014. doi:10.1111/bjd.12937.
  29. McGeachy MJ, Cua DJ. Th17 Cell Differentiation: The long and winding road. Immunity. 2008. doi:10.1016/j.immuni.2008.03.001.
  30. Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715-725. doi:10.1016/S1074-7613(00)00070-4.
  31. Aggarwal S, Ghilardi N, Xie MH, De Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003. doi:10.1074/jbc.M207577200.
  32. Lynde CW, Poulin Y, Vender R, Bourcier M, Khalil S. Interleukin 17A: Toward a new understanding of psoriasis pathogenesis. J Am Acad Dermatol. 2014. doi:10.1016/j.jaad.2013.12.036.
  33. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007. doi:10.1038/ni1497.
  34. Stritesky GL, Yeh N, Kaplan MH. IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol. 2008. doi:10.4049/jimmunol. 181.9.5948.
  35. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005. doi:10.1084/jem.20041257.
  36. Bovenschen HJ, Van De Kerkhof PC, Van Erp PE, Woestenenk R, Joosten I, Koenen HJPM. Foxp3 regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol. 2011. doi:10.1038/jid.2011.139.
  37. Yoshiki R, Kabashima K, Honda T, et al. IL-23 from langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J Invest Dermatol. 2014. doi:10.1038/ jid.2014.98.
  38. Wohn C, Ober-Blobaum JL, Haak S, et al. Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci. 2013. doi:10.1073/pnas.1307569110.
  39. Arnold IC, Mathisen S, Schulthess J, Danne C, Hegazy AN, Powrie F. CD11c+monocyte/macrophages promote chronic helicobacter hepaticusinduced intestinal inflammation through the production of IL-23. Mucosal Immunol. 2016. doi:10.1038/mi.2015.65. 
  40. Gordon KB, Duffin KC, Bissonnette R, et al. A Phase 2 trial of guselkumab versus adalimumab for plaque psoriasis. N Engl J Med. 2015. doi:10.1056/ NEJMoa1501646.
  41. Fioranelli M, Roccia MG, Lotti T. Risankizumab versus ustekinumab for moderate- to-severe plaque psoriasis. Dermatol Ther. 2017. doi:10.1007/978-981- 10-6190-5_106.
  42. Reich K, Armstrong AW, Foley P, et al. Efficacy and safety of guselkumab an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: Results from the phase III, double-blind, p. J Am Acad Dermatol. 2017;76(3):418-431. doi:10.1016/j.jaad.2016.11.042.
  43. Girolomoni G, Strohal R, Puig L, et al. The role of IL-23 and the IL-23/TH17 immune axis in the pathogenesis and treatment of psoriasis. J Eur Acad Dermatology Venereol. 2017. doi:10.1111/jdv.14433.
  44. Kryczek I, Zhao E, Liu Y, et al. Human TH17 cells are long-lived effector memory cells. Sci Transl Med. 2011. doi:10.1126/scitranslmed.3002949.
  45. Cheuk S, Wiken M, Blomqvist L, et al. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J Immunol. 2014;192(7):3111-3120. doi:10.4049/jimmunol.1302313.
  46. Gooderham MJ, Papp KA, Lynde CW. Shifting the focus – the primary role of IL-23 in psoriasis and other inflammatory disorders. J Eur Acad Dermatology Venereol. 2018. doi:10.1111/jdv.14868.
  47. S Feldman, C Poulos, I Gilloteau, B Mange, A Guana, M Boeri, B Germino, K Boehm, M Gutknecht MA. Patient Preferences for Treatment of Moderate-to- Severe Psoriasis: A U.S. Discrete-Choice Experiment Survey.; 2019.
  48. Sofen H, Smith S, Matheson RT, et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate- to-severe psoriasis. J Allergy Clin Immunol. 2014;133(4):1032-1040. doi:10.1016/j.jaci.2014.01.025.
  49. Cua DJ, Tato CM. Innate IL-17-producing cells: The sentinels of the immune system. Nat Rev Immunol. 2010. doi:10.1038/nri2800.
  50. Jones SA, Sutton CE, Cua D, Mills KHG. Therapeutic potential of targeting IL-17. In: Nature Immunology. ; 2012. doi:10.1038/ni.2450.
  51. Bhatia N, Blauvelt A, Brown M, et al. Updates on psoriasis and cutaneous oncology: Proceedings from the 2014 MauiDerm Meeting. J Clin Aesthet Dermatol. 2014.
  52. Saunte DM, Mrowietz U, Puig L, Zachariae C. Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management. Br J Dermatol. 2017. doi:10.1111/bjd.15015.
  53. Chang SH, Reynolds JM, Pappu BP, Chen G, Martinez GJ, Dong C. Interleukin- 17C promotes Th17 cell responses and autoimmune disease via interleukin- 17 receptor E. Immunity. 2011. doi:10.1016/j.immuni.2011.09.010. 
  54. Johansen C, Usher PA, Kjellerup RB, Lundsgaard D, Iversen L, Kragballe K. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol. 2009. doi:10.1111/j.1365-2133.2008.08902.x.
  55. Senra L, Stalder R, Alvarez Martinez D, Chizzolini C, Boehncke WH, Brembilla NC. Keratinocyte-derived IL-17E contributes to inflammation in psoriasis. J Invest Dermatol. 2016. doi:10.1016/j.jid.2016.06.009.
  56. Malakouti M, Brown GE, Wang E, Koo J, Levin EC. The role of IL-17 in psoriasis. J Dermatolog Treat. 2015. doi:10.3109/09546634.2013.879093.
  57. Johnston A, Fritz Y, Dawes SM, et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol. 2013. doi:10.4049/jimmunol. 1201505.
  58. Rickel EA, Siegel LA, Yoon B-RP, et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol. 2008. doi:10.4049/jimmunol.181.6.4299.
  59. Gaspari AA, Tyring S. New and emerging biologic therapies for moderate-tosevere plaque psoriasis: Mechanistic rationales and recent clinical data for IL-17 and IL-23 inhibitors. Dermatol Ther. 2015. doi:10.1111/dth.12251.
  60. Harper EG, Guo C, Rizzo H, et al. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J Invest Dermatol. 2009;129(9):2175-2183. doi:10.1038/jid.2009.65.
  61. Miossec P, Kolls JK. Targeting IL-17 and T H 17 cells in chronic inflammation. Nat Rev Drug Discov. 2012. doi:10.1038/nrd3794.
  62. Erbel C, Akhavanpoor M, Okuyucu D, et al. IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis. J Immunol. 2014. doi:10.4049/jimmunol. 1400181.
  63. Adami S, Cavani A, Rossi F, Girolomoni G. The role of interleukin-17A in psoriatic disease. BioDrugs. 2014. doi:10.1007/s40259-014-0098-x.
  64. Brembilla NC, Senra L, Boehncke WH. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front Immunol. 2018. doi:10.3389/fimmu.2018.01682.
  65. Kolbinger F, Loesche C, Valentin MA, et al. β-Defensin 2 is a responsive biomarker of IL-17A–driven skin pathology in patients with psoriasis. J Allergy Clin Immunol. 2017. doi:10.1016/j.jaci.2016.06.038.
  66. Loesche C, Kolbinger F, Valentin M, et al. Interleukin-17A blockade with secukinumab results in decreased neutrophil infiltration in psoriasis: minimally- invasive measurement by tape stripping. Adv Precis Med. 2016. doi:10.1155/2014/583736.
  67. Krueger JG, Fretzin S, Suárez-Fariñas M, et al. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol. 2012;130(1). doi:10.1016/j.jaci.2012.04.024.
  68. Russell CB, Rand H, Bigler J, et al. Gene expression profiles normalized in psoriatic skin by treatment with brodalumab, a human anti-il-17 receptor monoclonal antibody. J Immunol. 2014. doi:10.4049/jimmunol.1301737.
  69. Hot A, Miossec P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann Rheum Dis. 2011. doi:10.1136/ ard.2010.143768.
  70. Zrioual S, Ecochard R, Tournadre A, Lenief V, Cazalis M-A, Miossec P. Genome- wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J Immunol. 2009. doi:10.4049/jimmunol. 0801967.
  71. Glatt S, Baeten D, Baker T, et al. Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: Evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Ann Rheum Dis. 2018. doi:10.1136/annrheumdis- 2017-212127.
  72. Glatt S, Helmer E, Haier B, et al. First-in-human randomized study of bimekizumab, a humanized monoclonal antibody and selective dual inhibitor of IL-17A and IL-17F, in mild psoriasis. Br J Clin Pharmacol. 2017. doi:10.1111/ bcp.13185.
  73. Papp KA, Merola JF, Gottlieb AB, et al. Dual neutralization of both interleukin 17A and interleukin 17F with bimekizumab in patients with psoriasis: Results from BE ABLE 1, a 12-week randomized, double-blinded, placebo-controlled phase 2b trial. J Am Acad Dermatol. 2018. doi:10.1016/j.jaad.2018.03.037.
  74. Maroof A, Okoye R, Smallie T, et al. THU0038 bimekizumab dual inhibition of IL-17A and IL-17F provides evidence of IL-17F contribution to chronic inflammation in disease-relevant cells. In: Poster Presentations; 2017. doi:10.1136/ annrheumdis-2017-eular.4966.
  75. Maroof A, Baeten D, Archer S, Griffiths M, Shaw S. 02.13 Il-17f contributes to human chronic inflammation in synovial tissue: Preclinical evidence with dual il-17a and il-17f inhibition with bimekizumab in psoriatic arthritis. In: New Players and Novel Targets in Inflammation; 2017. doi:10.1136/annrheumdis- 2016-211050.13.
  76. Ramirez-Carrozzi V, Sambandam A, Luis E, et al. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat Immunol. 2011. doi:10.1038/ni.2156.
  77. Song X, Zhu S, Shi P, et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat Immunol. 2011. doi:10.1038/ni.2155.
  78. Vandeghinste N, Klattig J, Jagerschmidt C, et al. Neutralization of IL-17C reduces skin inflammation in mouse models of psoriasis and atopic dermatitis. J Invest Dermatol. 2018. doi:10.1016/j.jid.2018.01.036.
  79. Conrad C, Gilliet M. Psoriasis: from Pathogenesis to targeted therapies. Clin Rev Allergy Immunol. 2018. doi:10.1007/s12016-018-8668-1.
  80. Lønnberg AS, Zachariae C, Skov L. Targeting of interleukin-17 in the treatment of psoriasis. Clin Cosmet Investig Dermatol. 2014. doi:10.2147/CCID. S67534.
  81. Puig L. Brodalumab: The first anti-IL-17 receptor agent for psoriasis. Drugs of Today. 2017. doi:10.1358/dot.2017.53.5.2613690.
  82. Lewis E Tomalin, Chris Russell, Sandra Garcet, Adrian Ewald, Hanne Norsgaard, Mayte Suarez-Farinas JK. IL-17 Receptor A Inhibition with Brodalumab Rapidly Normalizes Molecular and Cellular Phenotype of Patients with Moderate- to-Severe Psoriasis Vulgaris; 2019.
  83. Sawyer L, Fotheringham I, Gibbons C MA. Brodalumab versus Secukinumab in Moderate-to-Severe Psoriasis: An Indirect Comparison of 52-Week Efficacy Outcomes; 2017.
  84. Sawyer L, Fotheringham I, Wright E, Yasmeen N, Gibbons C, Holmen Møller A. The comparative efficacy of brodalumab in patients with moderate-tosevere psoriasis: a systematic literature review and network meta-analysis. J Dermatolog Treat. 2018. doi:10.1080/09546634.2018.1427205.
  85. Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J, Puig L, Papp K, Spelman L, Toth D, Kerdel F, Armstrong AW, Stingl G, Kimball AB, Bachelez H, Wu JJ, Crowley J, Langley RG, Blicharski T, Paul C, Lacour JP, Tyring S, Kircik L, Chimenti S, Callis Duff NA. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med. 2015;373(14):1318-1328.
  86. Langley RG, Armstrong AW, Lebwohl MG, et al. Efficacy and safety of brodalumab in patients with psoriasis who had inadequate responses to ustekinumab: subgroup analysis of two randomized phase III trials. Br J Dermatol. 2019. doi:10.1111/bjd.17318.
  87. Grace Kimmel, Margot Chima MD, Hee Jin Kim MD, Christopher Yao MPH, Giselle Singer BS and MLM. Brodalumab in the Treatment of Moderateto- Severe Psoriasis in Patients Who Have Previously Failed Treatment with Anti-Interleukin-17A Therapies; 2019. 
  88. Montaudié H. Is an anti-interleukin-17 receptor able to do the job when an anti-interleukin-12/23 has failed? Br J Dermatol. 2019. doi:10.1111/bjd.17440.
  89. Papp KA, Gordon KB, Langley RG, et al. Impact of previous biologic use on the efficacy and safety of brodalumab and ustekinumab in patients with moderate-to-severe plaque psoriasis: integrated analysis of the rand randomized controlled trials AMAGINE-2 and AMAGINE-3. Br J Dermatol. 2018. doi:10.1111/bjd.16464.
  90. Andrew Blauvelt, Stephen Tyring, Richard Langley, Shipra Rastogi, Radhakrishnan Pillai RJI. 76th Annual Meeting of the American Academy of Dermatology; February 16-20, 2018; San Diego, CA Poster 6027 Efficacy and safety of brodalumab in patients with inadequate response to ustekinumab: analysis of two phase 3 psoriasis studies; 2018.